

CCP5/BioSim Summer^ISchool Antofagasta, Chile May 2019

UK Research

and Innovation

Particle Dynamics & DL_POLY

ILIAN TODOROV, ALIN ELENA

MICHAEL SEATON, IVAN SCIVETTI

VLAD SOKHAN, ANDREY BRUKHNO

CHIN YONG, JACOB WILKINS

JIM MADGE , HENRY BOATENG

BILL SMITH, IAN BUSH

STFC DARESBURY LABORATORY

SCIENTIFIC COMPUTING DEPARTMENT

UNITED KINGDOM

CCP5 MCC UKCOMES EPSRC

Pioneering research and skills

NATURAL ENVIRONMENT RESEARCH COUNCIL

Results Matter. Trust NAG.

Daresbury Laboratory

Who We Are

Identification Persistence Specificity Credit Accessibility

You can support and work with us advancing and utilising our methodologies by:

- citing appropriately our software packages
- collaborating and publishing research with us

Multiple Scales of Materials Modelling

Part 0

The DL_Software Packages

Science & Technology

Computer Modelling

Computer modelling is used to provide insight and understanding of how complex systems behave beyond what theory and experiment could deliver separately. It bridges theory and experiment by solving state equations numerically.

Computer simulations are used as an assisting tool by scientists and engineers to verify and/or predict experimental observations as well as test and/or tune theoretical models.

Computational Science

Computational Science is a generic term for any field of science where computer simulation is used in conjunction with theory and experiment to model various aspects of "reality" (observed or sought after phenomena), to provide solution to problems and answer to questions that often cannot be satisfactory explained by theory and experiment alone.

Within natural sciences one could outline a number of fields which generally resolve behaviour of nature (the physical world surrounding us) on different time- and length-scales: Physics, Chemistry, Materials and Engineering.

Modelling & Simulation

Allen & Tildesley

Two primary roles:

- Test models which explain experiments
- Test theoretical predictions

Driving forces:

- Computers are fast enough for numerical experiments
- Most models are too complicated for purely theoretical reasoning
- There are phenomena which can not be observed directly by experiments

Micro/Meso-scopic/Celestial Evolution

-- INSERT --

The DL_POLY Vehicle

Build to Perform on supercomputers, mobiles, laptops...

Powerful & Versatile to handle obstacles on unchartered terrain in unknown conditions

Multifunction Control to navigate safely & securely in all circumstances

Comfortable

for STEM researchers to use for everyday's tasks

Informative & Responsive to indicate why, where & how a problem occurred

As Functional as a Sports Utility Vehicle

Examples of Model Systems

Crystalline & Amorphous Solids – damage and recovery Dynamic processes in Metal-Organic & Organic Frameworks

Science & Technology Facilities Council

Examples of Videos

DL_FIELD A force field and model development tool for DL_POLY

Dr Chin W. Yong Computational Chemistry, Daresbury Laboratory

DL_FIELD uses:

Important application tool to enhance the usability of DL_POLY MD simulation package and to facilitate the use of a wide range of advance features included in the DL_POLY program.

Force field model conversion tool – produces CONFIG, FIELD files for DL_POLY runs.

Software infrastructure for users to easily simulate a wide-range of different types molecular models with minimum effort, while giving choice to adjust force field models.

Selected model examples using DL_FIELD

Organic cages

Polymer nanoparticle On POPC membrane

RpNiR - Complex multi-domain, multi-metal centers protein

Nanocomposite materials involving graphene

Carbohydrates and complex drug molecules

Accessing the Mesoscale via DL_MESO

- Modelling at mesoscale
 - Between atomistic and fluid dynamics length/time scales
 - Both atom-like and fluid-like behaviours important
 - Bottom-up (coarse-graining) or topdown approaches valid

Source: Prof. PV Coveney, Centre for Computational Science, UCL

- DL_MESO: mesoscopic modelling software suite
 - Authored by Dr Michael Seaton
 - Created for CCP5, base code for UKCOMES, used extensively by industry
 - Contains serial/parallel codes for different techniques (LBE, DPD)
 - Currently on version 2.6 (released November 2015)
 - 800 academic users (20% from UK) from variety of backgrounds (chemistry, physics, engineering etc.)

DL_MESO: Overview

Developer: michael.seaton@stfc.ac.uk

- Lattice Boltzmann Equation (LBE)
 - Statistical mechanics representation of fluid as gas particles: automatically gives Navier-Stokes (correct fluid) behaviour
 - Intuitive modelling of boundary conditions and interactions between multiple fluids
 - Inherently parallelisable using domain decomposition
- Dissipative Particle Dynamics (DPD)
 - Soft particles with pairwise thermostat: give
 Gallilean invariance and correct fluid behaviour
 - Close to classical molecular dynamics: particles can be coarse grains and represent (sections of) molecules with different interactions
 - Well suited to domain decomposition parallelism

ChemShell

DL developers: thomas.keal@stfc.ac.uk

- Multiscale QM/MM simulations
- Wide range of interfaces to external QM and MM codes

 inc. GAMESS-UK & DL_POLY
- ChemShell provides QM/MM driver and high-level tasks (optimisation, dynamics...)
- Parallelisation via MPI
- Controlled by scripts written in Tcl environment

you.lu@stfc.ac.uk

www.chemshell.org

DL-FIND

- Open source geometry optimisation library written in Fortran
- Standard optimisation driver for ChemShell
- Supports minimisation, transition state optimisation, reaction path optimisation, global optimisation, ...
- Special algorithms for efficient QM/MM optimisation

J. Kästner, J.M. Carr, T.W. Keal, W. Thiel, A. Wander, P. Sherwood, J. Phys. Chem. A, 113, 11856, (2009)

DL_MONTE A general purpose parallel Monte Carlo program

Dr John Purton Dr Andrey Brukhno

Daresbury Laboratory

Dr James Grant Dr Tom Underwood

University of Bath

Why Monte Carlo

 A technique to explore "equilibrium" and answer "hypothetical" questions by throwing dice and using the Metropolis scheme for numerical integration

Advantages of MC

- atom/molecule insersions/deletions/mutations \rightarrow chemical equilibrium
- "artistic" moves and pathways to skip energy barriers \rightarrow metastability & coexistence
- efficient biased exploration of configuration space \rightarrow thermodynamic equilibrium
- powerful riding free-energy landscapes \rightarrow transition states & rare events
- Metropolis scheme is simple conceptually & inexpensive algorithmically
- easy to exploit parallelism (HPC)
- MC lacks time & forces (major players in MD)
 - no mapping onto real time scale -> no kinetics

- no momenta / real forces -> might suffer from slow motion in dense systems
- efficient MC implies an imaginative and knowledgeable developer

H2O adsorption on MgO surface

DL_AKMC

Developers: john.Purton@stfc.ac.uk david.gunn@stfc.ac.uk

- Kinetic Monte Carlo (KMC) simulates state-to-state kinetics of a rare event system. Rare events correspond to the thermal activation of atoms from one energy basin to another on the potential energy surface. If the rates of these transitions are known, KMC can be used to simulate kinetics over long time scales.
- Adaptive Kinetic Monte Carlo (aKMC) is a method for determining all of the transitions from each state on the fly, eliminating the need to use a pre-defined rate-list.

DL_AKMC:

- Uses MD-type potentials
 (e.g. Buckingham, Tersoff, EAM etc.)
- Dimer method for finding transition states, from DL_FIND
- DL_POLY-type input files
- Simulation times reaching the level of seconds
- Runs on small workstations and large HPCs

Uses:

- Diffusion across/to surfaces and bulk
- Surface growth
- Defect mobility and clustering
- Simulation of infrequent event kinetics

DL_CGMAP

Objectives

- provide the CCP5 community with state-of-the-art CG utilities
- enable user-defined, numerically optimised coarse-grain models to be simulated by DL_POLY, DL_MESO, DL_MONTE
- truly multiscale simulations
 with the use of DL_POLY

Dr Andrey Brukhno in collaboration with CCG and VOTCA team (work originated at the University of Bath) www.ccp5.ac.uk/projects/ccp5_cg.shtml & www.votca.org

The Molecular Dynamics Method

Recommended Books

Elements of Molecular Dynamics W. Smith, 2017 (WWW)

- Statistical Mechanics: Theory and Molecular Simulation Mark Tuckerman, Oxford Graduate Texts, (FE 2010, SE 2016)
- *Computer Simulation of Liquids* M.P. Allen & D.J. Tildesley, Oxford (FE 1998, SE 2017)
- The Art of Molecular Dynamics Simulation D.C. Rapaport, Cambridge University Press (2004)
- Understanding Molecular Simulation Daan Frenkel & Berend Smit, Academic Press, (FE 1996, SE 2010)
- *Theory of Simple Liquids* J.-P. Hansen and I.R. McDonald, Academic Press (1986).
- Classical Mechanics H. Goldstein+ (FE 1950, SE 1980, TR 2001)
- Molecular Modelling, Principles & Applications A.R. Leach, Pearson Prentice Hall (SE 2001)

Statistics & Warnings

- Just because you see something in a simulation does NOT mean it is real! There are a lot of approximations (numerical & statistical errors) and assumptions (ergodicity, potentials holding beyond state points fitted for – T, P, pH; no quantum effects at low temperature, no ionisation processes, charges are fixed, etc.).
- Equilibrium properties are all about statistics! However, systems may be subject to trapping (in phase space) due to circumstances as initial conditions.
- When you've seen it 10 times it's significant a single event is often not! This relates to how long is long for simulations.
- You should always try to calculate error estimates for predicted properties!

Molecular Dynamics: Definitions

- Theoretical tool for modelling the detailed microscopic behaviour of many different types of systems, including; gases, liquids, solids, polymers, surfaces and clusters.
- In an MD simulation, the <u>classical equations of motion</u> governing the <u>microscopic time evolution</u> of a many body system are <u>solved</u> <u>numerically</u>, subject to the boundary conditions appropriate for the geometry or symmetry of the system.
- Can be used to monitor the microscopic mechanisms of energy and mass transfer in chemical processes, and dynamical properties such as absorption spectra, rate constants and transport properties can be calculated.
- Can be employed as a means of sampling from a statistical mechanical ensemble and determining equilibrium properties. These properties include average thermodynamic quantities (pressure, volume, temperature, etc.), structure, and free energies along reaction paths.

Molecular Dynamics in a Nutshell

- MD is the solution of the classical equations of motion for atoms and molecules to obtain the time evolution of a system.
- It is applied to many-particle systems since a general analytical solution is not possible. Thus one must resort to numerical methods and computers.
- It does classical mechanics only since a fully fledged many-particle time-dependent quantum method is not yet available.
- It uses a Maxwell-Boltzmann averaging process for thermodynamic properties (i.e. time averaging).

Time and Length Scales

Molecular Dynamics for Beginners

MD simulations are used for:

- Microscopic insight: we can follow the motion of a single molecule (glass of water)
- Investigation of phase change (NaCl)
- Understanding of complex systems like polymers (plastics - hydrophilic and hydrophobic behaviour)

Example: Simulation of Argon

Lennard-Jones Potential

Models the Pauli exclusion principle (repulsive) at short distances & the van der Waals forces (attractive) at long ones

Equations of Motion

Lagrange Equation time evolution

$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{v_i}} \right) = \frac{\partial L}{\partial r_i}$
$m_i \vec{a}_i = \vec{F}_i$
$\vec{F}_i = \sum_{i=1}^{N} \vec{f}_{ij}$
$\vec{f}_{ij} = -\vec{\nabla}_i V(r_{ij})$

 r_{ij} Pair force: $-\frac{\partial V(r_{ij})}{\partial x_i} = -\frac{\partial V(r_{ij})}{\partial r_{ij}}\frac{\partial r_{ij}}{\partial x_i}$ $f_{i(i)}^{x}$ $\overrightarrow{r_{ii}} = \overrightarrow{r_i} - \overrightarrow{r_i}$ $r_{ij} = \left[\left(x_j - x_i \right)^2 + \left(y_j - y_i \right)^2 + \left(z_j - z_i \right)^2 \right]^{\overline{2}}$ $\frac{\partial r_{ij}}{\partial x_i} = -\frac{\left(x_j - x_i\right)}{r_{ij}} = \frac{r_{ij}^x}{r_{ij}}$

Note this leads to equal and opposite forces on the two particles.

Force Evaluation – particle interactions

EoM Consequences

- The force on atom *i* for any given configuration can be calculated from the force-field. This equation relates force and acceleration.
- So for any given configuration we know the acceleration of each particle.

$$v_i(\tau) = v_i(0) + \int_0^\tau \frac{dv_i}{dt} dt$$

If a particle has an initial velocity, $v_i(0)$, and moves under the action of this force for a time, τ , its velocity after the time, τ , will be given by integration.

$$r_i(\tau) = r_i(0) + \int_0^\tau v_i(t) dt$$

Similarly the position of the particle after time, τ , is given by an integral of the velocity.

UK Research

and Innovation

Unfortunately once the particles move the distances governing the potential change and so the forces are altered.

Molecular dynamics is about integrating these equations of motion such that the continuous trajectories are obtained numerically.

Boundary Conditions

- None biopolymer simulations
- Stochastic boundaries biopolymers
- Hard wall boundaries pores, capillaries
- Periodic boundaries (PBC) most MD simulations

Why PBC: Our model systems are still too small especially with respect to Avogadro's number! To avoid surface over bulk domination effects we resort to periodic boundaries, pretending that boundaries do not exist (like in pacman)!

2D cubic periodic

PBC Consequences

- The system no longer has a *surface*.
- The system becomes *pseudo-periodic* (used to advantage for Ewald sums). It is incorrect to impose cutoff on long range interactions. However, the Ewald method can deal with infinite number of periodic images – specifically Particle Mesh Ewald (PME)
- Correlations in space beyond half cell width (L/2) are artificial. For this reason, the cut-off $r_{\rm cut}$ is usually no greater than L/2.
- Correlations in time beyond t=L/c are (in principle) subject to *recurrence*. In practice this does not seem to be the case.
- Use with Minimum Image convention

Ewald Summation

The method offers an elegant solution to solving the full electrostatic problem by splitting it in two parts - one in real space and one in reciprocal space. In real space, complying with the cutoff concept, a convenient screening function is added around all charges to make their interactions decay very fast at $r_{\rm cut}$. The added screening functions can be subtracted in reciprocal space due to the periodic boundary condition by using Fourier transforms.

Periodic Boundary Conditions

Triclinic

Hexagonal prism

Truncated octahedron

Rhombic dodecahedron

Minimum Image Condition (MIC)

Use r_{ij}, not r_{ij}

 $x_{ij} = x_{ij} - L^* \operatorname{Nint}(x_{ij}/L)$

Nint(a)=nearest integer to a

Science & Technology Facilities Council UK Research and Innovation

2D cubic periodic

3D MIC

Use r_{ii} , not r_{ii} : To find r_{ii} , work in fractional co-ordinates:

 $f_{aii} = a^* \bullet r_{ij}$ $f_{bij} = b^* \bullet r_{ij}$ $f_{aij} = c^* \bullet r_{ij}$ (* indicates reconstructions)

(* indicates reciprocal

These need to be in the range $-\frac{1}{2} < f \le \frac{1}{2}$

$$f_{ij'} = f_{ij} - \operatorname{n}\operatorname{int}(f_{ij})$$

(nint(f) = nearest integer to f)

Then convert back to Cartesian:

$\left(r_{ij'x}\right)$		(a_x)	b_x	C_x	$(f_{aij'})$
$r_{ij'y}$	=	a_{y}	b_{y}	C _y	$f_{\it bij'}$
$\left(r_{ij'z}\right)$		a_z	b_{z}	c_z	$\left(f_{cij'}\right)$

For van der Waals interactions use only the nearest images of atoms. The minimum image convention limits the cut off used in the potential sum to half the shortest lattice param **UK Research** and Innovation

Figure 2. Snapshots of a condensation simulation at $T_{PE} = 80$ K and $\rho = 50$ g/dm³ after 5 ns. (a) Complete polymer film with condensed argon and a part of the argon vapor phase. (b) Surface layers of polyethylene (c) Polyethylene surface layer and first argon layer. (d) Polyethylene surface layer with first and all subsequent argon layers. Each layer has a different grayscale (red shade).

Lennard-Jones Spheres (Argon)

Provides a relatively simple system in which the ideas of using molecular dynamics to study kinetics and thermodynamics of physical processes can be tested.

Here is a simulation of Ar condensation at the surface of a polyethylene film is simulated.

System size: Film consists of 374 chains, 70 sites each.

Vapor phase: 5000 argon atoms.

Run times: 1 ns equilibration of components. 12 ns run times.

R. Rozas & T. Kraska, J. Phys. Chem. C, 111, 15784, (2007).

Key Stages in MD Simulation

• Set up initial system positions of atoms and initial velocities (3D Boltzmann distributed)

• Calculate atomic forces based on potential model

• Calculate atomic motion via an integration algorithm

• Calculate physical properties basically collect instantaneous data for statistical purposes

• Repeat !

• Produce final summary

Integration Algorithms

Essential Requirements:

- Computational speed
- Low memory demand
- Accuracy
- Stability (energy conservation, no drift)
- Useful property time reversibility
- Extremely useful property symplecticness
 = time reversibility + long term stability
 (warranting bounded errors in time)

Integration: Essential Idea

$[\underline{r} (t), \underline{v}(t), \underline{f}(t)] \longrightarrow [\underline{r} (t+\Delta t), \underline{v}(t+\Delta t), \underline{f}(t+\Delta t)]$

Simulation Cycle & Integration Schemes

Taylor expansion:
$$r_{n+1} = r_n + \Delta t v_i(t) + \frac{\Delta t^2}{2!} \frac{f_n}{m} + \frac{\Delta t^3}{3!} \ddot{r}_i(t) \Delta t^3 + O(\Delta t^4)$$

Setup
initial
systemLeapfrog Verlet (LFV)Velocity Verlet (VV)0.
$$r_i(t), v_i(t), v_i(t), v_i(t), v_i(t), f_i(t)$$
1.0. $r_i(t), v_i(t), f_i(t)$ ForcesCalculate
forces1. $f_i(t)$ - calculated afresh1.1. $v_i(t + \frac{1}{2}\Delta t) = v_i(t) + \frac{\Delta t}{2} \frac{f_i(t)}{m_i}$ MotionCalculate
motion2. $v_i(t + \frac{1}{2}\Delta t) = v_i(t - \frac{1}{2}\Delta t) + \Delta t \frac{f_i(t)}{m_i}$ 1.2. $r_i(t + \Delta t) = r_i(t) + \Delta t v_i(t + \frac{1}{2}\Delta t)$ Accumulate
statistical
data3. $r_i(t + \Delta t) = r_i(t) + \Delta t v_i(t + \frac{1}{2}\Delta t)$ 1.2'. SHAKE (r_i, v_i, f_i) Summarise
simulation3". $v_i(t) = \frac{v_i(t - \frac{1}{2}\Delta t) + v_i(t + \frac{1}{2}\Delta t)}{2}$ 2.1. $v_i(t + \Delta t) = v_i(t + \frac{1}{2}\Delta t) + \frac{\Delta t}{2} \frac{f_i(t + \Delta t)}{m_i}$ 2.1'. Rattle (v_i)

and Innovation

Leapfrog Verlet Integration

$$\vec{v}_i^{n+1/2} = \vec{v}_i^{n-1/2} + \frac{\Delta t}{m_i} \vec{f}_i^n + O(\Delta t^3)$$
$$\vec{r}_i^{n+1} = \vec{r}_i^n + \Delta t \vec{v}_i^{n+1/2} + O(\Delta t^4)$$

f ^{n.}	-2	f ⁿ⁻¹		f ⁿ			
r ⁿ⁻² r ⁿ⁻¹		1	r	n	r ⁿ⁺	1	
	V ⁿ⁻³	3/2	V ⁿ⁻¹	1/2	V ⁿ⁺	1/2	

 $\begin{aligned} & \text{Application in Practice} \\ \vec{v}_i^{n+1/2} = \vec{v}_i^{n-1/2} + \frac{\Delta t}{m_i} \vec{f}_i^n \\ \vec{r}_i^{n+1} = \vec{r}_i^n + \Delta t \vec{v}_i^{n+1/2} \\ \vec{v}_i^n = \frac{\vec{v}_i^{n-1/2} + \vec{v}_i^{n+1/2}}{2} \end{aligned}$

Discrete time

Velocity Verlet Integration $\vec{r}_i^{n+1} = \vec{r}_i^n + \Delta t \vec{v}_i^n + \frac{\Delta t^2}{2m_i} \vec{f}_i^n + O(\Delta t^4)$ $\vec{v}_i^{n+1} = \vec{v}_i^n + \frac{\Delta t}{2m_i} \left(\vec{f}_i^n + \vec{f}_i^{n+1}\right) + O(\Delta t^2)$

f ⁿ⁻²	f ⁿ⁻¹	fn	f ⁿ⁺¹
r ⁿ⁻²	r ⁿ⁻¹	r ⁿ	rn+1
V ⁿ⁻²	V ⁿ⁻¹	vn	V ⁿ⁺¹

 $\begin{aligned} & \text{Application in Practice} \\ & \vec{v}_i^{n+1/2} = \vec{v}_i^n + \frac{\Delta t}{2m_i} \vec{f}_i^n \\ & \vec{r}_i^{n+1} = \vec{r}_i^n + \Delta t \vec{v}_i^{n+1/2} \\ & \vec{v}_i^{n+1} = \vec{v}_i^{n+1/2} + \frac{\Delta t}{2m_i} \vec{f}_i^{n+1} \end{aligned}$

Discrete time

Science & Technology Facilities Council

Considerations for MD

In the potentials we are using the force generated between a pair of atoms is equal and opposite. This means that the total momentum of the system cannot change, *i.e.*:

 $\sum_{i} m_{i} \vec{v}_{i} = 0 \quad \begin{array}{l} \text{Similarly the centre} \\ \text{of mass position} \\ \text{should be fixed:} \end{array} = \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}} \quad \text{since } \vec{r}_{cm} = \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}} \\ \end{array}$

Observations such as this allow checks that coding/integration are working!

In MD we have two contributions to the energy.

 $KE(t) = \frac{1}{2} \sum_{i} m_{i} |\vec{v}_{i}(t)|^{2}$ 1) Kinetic energy, which sets the temperature:

2) Potential energy, which is dependent on the atomic configuration according to $PE(t) = \sum_{i} \sum_{i>i} V_{ij}(r_{ij}(t))$ the force-field:

The energy of the system is continually interchanging between potential and kinetic contributions (when all interactions are Science & Technology Facilities Council conservative, no external fields). and Innovation

System Properties – Static

 $\langle K.E.\rangle = \left(\frac{1}{2}\sum_{i}^{N}m_{i}v_{i}^{2}\right)$ Kinetic Energy: 1600 T_{PE} = 80 K t = 0.5 ns⁵ mp 6 / ط ا 1200 $\rho = 50 \text{ g/dm}^3$ $T = \frac{2}{3} \frac{\langle K. E. \rangle}{Nk_p}$ 800 Temperature: PE Ar Ar 400 0 160 $U_c = \left(\sum_{i=1}^{N-1} \sum_{i>i}^{N} V(r_{ij})\right)$ ¥ 120 • Configuration Energy: -20 -10 10 Z/nm $PV = Nk_BT - \frac{1}{3} \left(\sum_{i}^{N} \vec{r_i} \cdot \vec{f_i} \right)$ Pressure: $T_{\rm PE} = 80 \, {\rm K}$ 7 1200 -E 800 t = 5 ns $o = 50 \text{ g/dm}^3$ PE Ar • Specific heat: $\langle \delta(U_c)^2 \rangle = \frac{3}{2} N k_B^2 T^2 \left(1 - \frac{3}{2} \frac{N k_B}{C_m} \right) \stackrel{\times}{=} \frac{160}{120}$ 40 -20 -10 0 -30 10

20

20

Z/nm

30

Data from: R. Rozas & T. Kraska, J. Phys. Chem. C, 111, 15784, (2007).

System Properties – Static (2)

Structural Properties

- Pair correlation (Radial Distribution Function):

$$g(r) = \frac{\langle n(r) \rangle}{4\pi\rho r^2 \Delta r} = \frac{V}{N^2} \left(\sum_{i=1}^{N-1} \sum_{j\neq i}^{N} \delta(r - r_{ij}) \right)$$

- Structure factor:

$$S(k) = 1 + 4\pi\rho \int_{0}^{\infty} \frac{\sin(kr)}{kr} (g(r) - 1) r^2 dr$$

- Note: *S(k)* available from X-ray diffraction

Radial Distribution Function (RDF)

Typical RDF

System Properties – Dynamic (1)

Single correlation functions:

Mean squared displacement (Einstein relation)

$$2Dt = \frac{1}{3} \left\langle |r_i(t) - r_i(0)|^2 \right\rangle$$

Velocity Autocorrelation (Green-Kubo relation)

$$D = \frac{1}{3} \int_{0}^{t} \langle v_i(t) - v_i(0) \rangle dt$$

Typical VAF

System Properties – Dynamic (2)

Collective Correlation Functions: DL_POLY GUI

General van Hove correlation function

$$G(\mathbf{r},t) = \frac{1}{N} \left\langle \sum_{i,j=1}^{N} \delta[r + r_i(0) - r_j(t)] \right\rangle$$

van Hove self-correlation function

$$G_s(\mathbf{r},t) = \frac{1}{N} \left\langle \sum_{i}^{N} \delta[r - r_i(0) - r_i(t)] \right\rangle$$

van Hove distinct correlation function

$$G_d(\mathbf{r},t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \sum_{j \neq i}^{N} \delta[r + r_i(0) - r_j(t)] \right\rangle$$

Uses of MD

Ensemble average:

- Free energy (of binding, solvation, interaction) differences
- Diffusion coefficients, viscosity, elastic constants
- Reaction rates, phase transition properties
- Protein folding times
- Structure refinement
- Non-equilibrium processes:
- Energy Dissipation/Radiation damage
- Sound Propagation
- Surface coating
- Nucleation (meta-dynamics)

Some properties can be obtained directly from neutron scattering

Temperature vs **Time**

CC3 RESEARCH, DAN HOLDEN & ABBIE TREWIN (LIVERPOOL)

The first thing is to locate the PLD within **CC3**.

Use crystal structure of **CC3** to compare against 3D pore network. Established that the cage was limiting the PLD, therefore one cage isolated.

We know that **CC3** has a 3D diamondoid network.

This cage was examined and the atoms involved in creating the narrow neck in the pore topology identified; the circumference of this circle was 3.62 Å – this is the PLD.

CC3 RESEARCH

The PLD could then be compared to the diameter of the gases:

This now suggests that all the gases, save SF_6 , are small enough to diffuse through **CC3**.

Limitations of MD

- Parameters are imperfect and fit to particular P, T, pH, etc.
- Phase space is not sampled exhaustively
- Example: Free energies of solvation for amino acids often have errors ~1kJ/mol
- Likely impossible to calculate binding free energies more accurately than this
- Chemical bonds breaking and creation is not allowed
- Limited polarization effects; waters can reorient, but partial charges are fixed

However, MD simulations are cheaper than experiments as more easy to set up, repeat with changes to the models system, forcefield and/or initial conditions and thus serve as an invaluable testing tool for scientists! It may be used cleverly to answer cheaply hypothetical and comparative questions!

How to Use MD

- Think first and then simulate
- Ask specific questions
 - Which of a set of molecules binds best?
 - Which material recovers better, faster under irradiation?
- Simulate 10 models: do they act the same?
- Try to answer A/B type questions:
 - Does a His-Arg mutation affect stability?
 - Does replacement of Zr with Pb in pyrochlores affect the recovery processes under ballistic bombardment?

Beyond Classical MD

The atomic scale is not always best choice when trying to access phenomena occurring on a larger time- or length scales. There ways to use MD strengths and modify the equations of motion and reduce the degrees of freedom as in Dissipative Particle Dynamics or just the do the latter use Coarse Grained MD. These simulations will be cheaper to run but some of the fine-grainness (chemistry and small scale details) will be lost as well as will the accurate timing. Particles will be a congregations of atoms and may even have a shape and interact via non-spherically symmetric potentials.

Another way to ask questions for rare processes and speed up timescale (nucleation, vacancy hopping, defects annihilation, protein folding, crystal phases in emulsion formation) is to extend dynamics using advanced methodologies such as temperature accelerated dynamics, hyper-dynamics and meta-dynamics.

Think about what you want to get from the simulation: *predictions* or *explanations!*

DL_POLY Project Background

DL_POLY Trivia

- <u>General purpose parallel (classical)</u> MD simulation software
- It was conceived to meet needs of CCP5 The Computer Simulation of Condensed Phases (academic collaboration community)
- Written in modularised Fortran90 (NagWare & FORCHECK compliant) with MPI2 (MPI1+MPI-I/O) & fully self-contained
 - 1994 2010: DL_POLY_2 (RD) by W. Smith & T.R. Forester (funded for 6 years by EPSRC at DL). In 2010 moved to a BSD open source licence as DL_POLY_Classic.
 - 2003 2010: DL_POLY_3 (DD) by I.T. Todorov & W. Smith (funded for 4 years by NERC at Cambridge). Up-licensed to DL_POLY_4 in 2010 – free of charge to academic researchers and at cost to industry (*provided as source*).
- ~ 21,600 licences taken out since 1994 (~1,500 pa since 2007)
- ~ 4,500 *e*-mail list

Current Versions

- Written in modularised free formatted F90 (+MPI) with rigorous code syntax (FORCHECK and NAGWare verified) and **no external library dependencies**
- **DL_POLY_4** (version 9)
 - **Domain Decomposition** parallelisation, based on domain decomposition (no dynamic load balancing), limits: up to $\approx 2.1 \times 10^9$ atoms with inherent parallelisation
 - Parallel I/O (amber netCDF) and radiation damage features
 - Free format (flexible) reading with some fail-safe features and basic reporting (but not fully fool-proofed)
- DL_POLY_Classic (version 1.10)
 - Replicated Data parallelisation, limits up to ≈30,000 atoms with good parallelisation up to 100 (system dependent) processors (running on any processor count)
 - Hyper-dynamics, Temperature Accelerated Dynamics, Solvation Dynamics, Path Integral MD
 - Free format reading (somewhat rigid)

ence & Technology lities Council UK Research and Innovation

DL_POLY on the Web

WWW:

http://www.ccp5.ac.uk/DL_POLY/

FTP:

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/

COMM:

http:/www.jiscmail.ac.uk/DLPOLY/

Further Information

- W. Smith and T.R. Forester J. Molec. Graphics (1996), 14, 136
- W. Smith, C.W. Yong, P.M. Rodger Molecular Simulation (2002), 28, 385
- I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove *J. Mater. Chem*. (2006), **16**, 1611-1618
- W. Smith (Guest Editor) Molecular Simulation (2006), **32**, 933
- I.J. Bush, I.T. Todorov and W. Smith Comp. Phys. Commun. (2006), 175, 323-329

DL_POLY_DD Project Evolution

Licence Statistics

Annual Downloads & Valid eMail List Size

Year

Project Impact by Google

Project Reach

Project Reach

Project Team

- Vlad Sokhan Shaped Particles
- Anisotropic coarse-grained fields
- Gay-Berne's potentials
- Alin Elena Forward Flux Sampling
- Rare events technique originally developed for nonequilibrium systems, with stochastic element to the integration, with ability to extract reaction rates
- Ivan Scivetti Empirical Valence Bond
- Reactive dynamics for bond breaking and (re)making via product and reactant mixing terms

Project Contributors

- **Bill Smith project originator**
- Ian Bush 3DFFT DaFT
- Andrey Brukhno PDF for intramolecular interactions (CG)
- Henry Boateng Multipolar Electrostatics
- Michael Seaton TTM, DPD, ...
- Chin Yong FF expert, DL_FIELD
- **Peicho Petkov Direct Poisson Solver efforts**
- **Others ICHEC collaborators**

cience & Technology icilities Council

DL_POLY Basics & Algorithms

Simplified View of Force Field Elements

Bonded interactions – also referred as intra-molecular

• Non-bonded interactions – also referred as *inter*-molecular

Supported Molecular Entities

Force Field Definitions – I

- *particle:* a rigid ion or an atom (charged or not), a core or a shell of a polarisable ion (with or without associated degrees of freedom), a massless charged site. A particle is a countable object and has a global ID index.
- site: a particle prototype that serves to define the chemical & physical nature (topology/connectivity/stoichiometry) of a particle (mass, charge, frozen-ness). Sites are not atoms they are prototypes!
- *Intra-molecular interactions:* chemical bonds, bond angles, dihedral angles, improper dihedral angles, inversions. Usually, the members in a unit do not interact via an intermolecular term. However, this can be overridden for some interactions. These are defined by *site*.
- Inter-molecular interactions: van der Waals, metal (2B/E/EAM, Gupta, Finnis-Sinclair, Sutton-Chen), Tersoff, threebody, four-body. Defined by species.

Force Field Definitions – II

- Electrostatics: Standard Ewald*, Hautman-Klein (2D) Ewald*, SPM Ewald (3D FFTs), Force-Shifted Coulomb, Reaction Field, Fennell damped FSC+RF, Distance dependent dielectric constant, Fuchs correction for non charge neutral MD cells.
- *Ion polarisation* via Dynamic (Adiabatic) or Relaxed shell model.
- *External fields:* Electric, Magnetic, Gravitational, Oscillating & Continuous Shear, Containing Sphere, Repulsive Wall.
- Intra-molecular like interactions: tethers, core shells units, constraint and PMF units, rigid body units. These are also defined by site.
- *Potentials:* parameterised analytical forms defining the interactions. These are always spherically symmetric!
- THE CHEMICAL NATURE OF PARTICLES DOES NOT CHANGE IN SPACE AND TIME!!! *

Force Field by Sums

$$\begin{split} V(\vec{r}_{1},\vec{r}_{2},....,\vec{r}_{N}) &= \sum_{i,j}^{N} U_{pair}(|\vec{r}_{i}-\vec{r}_{j}|) + \frac{1}{4\pi\epsilon\epsilon_{0}} \sum_{i,j}^{N} \frac{q_{i}q_{j}}{|\vec{r}_{i}-\vec{r}_{j}|} + \\ \sum_{i,j,k}^{N} U_{Tersoff}(\vec{r}_{i},\vec{r}_{j},\vec{r}_{k}) + \sum_{i,j,k}^{N} U_{3-body}(\vec{r}_{i},\vec{r}_{j},\vec{r}_{k}) + \sum_{i,j,k,n}^{N} U_{4-body}(\vec{r}_{i},\vec{r}_{j},\vec{r}_{k},\vec{r}_{n}) + \\ \epsilon_{metal}\left(\sum_{i,j}^{N} V_{pair}(|\vec{r}_{i}-\vec{r}_{j}|) + \sum_{i}^{N} F\left(\sum_{i,j}^{N} \rho_{ij}(|\vec{r}_{i}-\vec{r}_{j}|)\right)\right) + \\ \sum_{i_{bend}}^{N_{bodd}} U_{bond}(\vec{i}_{bond},\vec{r}_{a},\vec{r}_{b}) + \sum_{i_{angle}}^{N_{angle}} U_{angle}(\vec{i}_{angle},\vec{r}_{a},\vec{r}_{b},\vec{r}_{c}) + \\ \\ \frac{N_{bind}}{\sum_{i_{dibed}}} U_{dihed}(\vec{i}_{dihed},\vec{r}_{a},\vec{r}_{b},\vec{r}_{c},\vec{r}_{d}) + \sum_{i_{angle}}^{N_{angle}} U_{invers}(\vec{i}_{invers},\vec{r}_{a},\vec{r}_{b},\vec{r}_{c},\vec{r}_{d}) + \\ \\ \frac{N_{effer}}{\sum_{i_{effer}}} U_{tether}(\vec{i}_{tether},\vec{r}_{i},\vec{r}_{i},\vec{r}_{i}) + \sum_{i_{core-shell}}^{N_{angle}} U_{core-shell}(\vec{i}_{core-shell},\vec{r}_{i}-\vec{r}_{j}) + \\ \\ \frac{N_{effer}}{N_{effer}} U_{tether}(\vec{i}_{tether},\vec{r}_{i},\vec{r}_{i},\vec{r}_{i}) + \\ \\ \end{bmatrix}$$

Boundary Conditions

0. None (e.g. isolated macromolecules)

- 1. Cubic periodic boundaries
- 2. Orthorhombic periodic boundaries
- 3. Parallelepiped (triclinic) periodic boundaries
- 4. Truncated octahedral periodic boundaries*

5. Rhombic dodecahedral periodic boundaries*

6. Slabs (i.e. x,y periodic, z non-periodic)

Assumed Parallel Architecture

DL_POLY is designed for homogenious distributed parallel machines

Replicated Data Strategy – I

Replicated Data Strategy – II

- Every processor sees the full system
- No memory distribution (performance overheads and limitations increase with increasing system size)
- Functional/algorithmic decomposition of the workload
- Cutoff ≤ 0.5 min system width
- Extensive global communications (extensive overheads increase with increasing system size)

Parallel RD Verlet Neighbour List

Brode-Ahlrichs distributed list!

Domain Decomposition MD

Linked Cell Lists

- Linked lists provide an elegant way to scale short-ranged two body interactions from $O(N^2/2)$ to $\approx O(N)$. The efficiency increases with increasing link cell partitioning – as a rule of thumb best efficacy is achieved for cubic-like partitioning with number of link-cells per domain \geq 4 for any dimension.
- Linked lists can be used with the same efficiency for 3-body (bond-angles) and 4-body (dihedral & improper dihedral & inversion angles) interactions. For these, the linked cell halo is double-layered and as $cutoff^{3/4-body} \leq 0.5*cutoff^{2-body}$ this makes the partitioning more effective than that for the 2-body interactions.
- The larger the particle density and/or the smaller the cutoff with respect to the domain width, (the larger the sub-selling and the better the spherical approximation of the search area), the shorter the Verlet neighbour-list search.

Liked Cell List Idea

Sub-celling of the LC

- Provides dynamically adjustable workload for variable local density and VNL speed up of ≈ 30% (45% theoretically).
- Provides excellent serial performance, extremely close to that of Brode-Ahlrichs method for construction of the Verlet neighbour-list when system sizes are smaller < 5000 particles.

Conditional Update of the VLN

- Replicated Data Shell Stripping the VNL build up is extended for $r_{\text{cut}}+\delta r$ (shell width). The extended two body list is rebuild only and only when a pair of neighbouring particles has travelled more than δr apart since the last VNL build point. Rule of thumb $\delta r/r_{\text{cut}}\approx$ 5-15%.
- Domian Decomposition Particle Blurring the VNL build up is extended for r_{cut} + δr (domain padding). The extended two body list is rebuild only and only when a particle has travelled apart more than $\delta r/2$ apart since the last VNL build point. Rule of thumb $\delta r/r_{cut} \approx 1-5\%$.
- Consequences:
 - All short-ranged force evaluations have an additional check on pairs distance!
 - Memory and Communication over Computation and Communication balance. Force field (FF) dependent.
 - Short ranged FF 60-100% gains, FF with Ewald 10-35%.

Parallel Forces Calculations

- Bonded forces:
 - Algorithmic decomposition for DL_POLY_C
 - Interactions managed by bookkeeping arrays,
 i.e. explicit bond definition!!!
 - Shared bookkeeping arrays
- Non-bonded forces:
 - Distributed Verlet neighbour list (pair forces)
 - Link cells (3,4-body forces)
- Implementations differ between DL_POLY_4 & C!

DL_POLY_C & Bonded Forces

DL_POLY_4 & Bonded Forces

RD Distribution Scheme: Bonded Forces

DD Distribution Scheme: Bonded Forces

Ensembles & Algorithms

Integration:

Available as velocity Verlet (VV) or leapfrog Verlet (LFV) generating flavours of the following ensembles

- NVE
- NVT (E_{kin}) Evans
- NVT dpdS1 dpdS2 Sharlow 1st or 2nd order splitting (VV only)
- NVT Andersen^, Langevin^, Berendsen, Nosé-Hoover, GST
- NPT Langevin[^], Berendsen, Nosé-Hoover, Martyna-Tuckerman-Klein[^]
- NoT/NPnAT/NPnyT Langevin^, Berendsen, Nosé-Hoover, Martyna-Tuckerman-Klein^

<u>Note:</u> CoM motion is removed from non-conserving integrators!

Constraints & Rigid Body Solvers:

- VV dependent RATTLE, No_Squish, QSHAKE*
- LFV dependent SHAKE, Euler-Quaternion, QSHAKE*

Constraint Bonds & Rigid Bodies

Constraint bonds can be used to increase the timestep size removing vibration of chemical bonds by an iterative procedure. SHAKE introduces retrospective force to get to CB's length to the desired equilibrium distance within a tolerance (*retrospective pressure effect*). RATTLE removes iteratively CBs' particles velocities components along the CBs direction (*retrospective kinetic effect*). A CB removes a half degree of freedom from each particle!

Rigid bodies provide a smarter way to move whole molecular fragments as a whole, keeping all fragments' internal distances invariant in time. A RB has up to 6 degrees freedom – 3 for CoM motion and 3 for rotation (2 for linear molecules as CO_2)! Rotational motion requires solving numerically the Eulerian equations of rotation.

Extended Ensembles in VV casting

Velocity Verlet integration algorithms can be naturally derived from the non-commutable Liouville evolution operator by using a second order Suzuki-Trotter expansion. Thus they are symplectic/true ensembles (with conserved quantities) warranting conservation of the phase-space volume, time-reversibility and long term numerical stability...

Exemplary VV Expansion of NVE to NVT, NPT & NoT

VV-Stage-1: $r_i(t), v_i(t), f_i(t)$ Thermostat $(t \rightarrow t + \frac{1}{4}\Delta t)$: $\frac{1}{4}\Delta t$ Barostat $(t \rightarrow t + \frac{1}{2}\Delta t)$: $\frac{1}{2}\Delta t$ Thermostat $(t + \frac{1}{4}\Delta t \rightarrow t + \frac{1}{2}\Delta t)$: $\frac{1}{4}\Delta t$ $v_i(t + \frac{1}{2}\Delta t) = v_i(t) + \frac{\Delta t}{2}\frac{f_i(t)}{m_i}$: $\frac{1}{2}\Delta t$ $r_i(t + \Delta t) = r_i(t) + \Delta t v_i(t + \frac{1}{2}\Delta t)$: Δt RATTLE_R $(t \rightarrow t + \Delta t)(r_i, v_i, f_i)$: Δt VV-Stage-2:

 $r_{i}(t + \Delta t), v_{i}\left(t + \frac{1}{2}\Delta t\right), f_{i}(t + \Delta t) - afresh$ $v_{i}(t + \Delta t) = v_{i}\left(t + \frac{1}{2}\Delta t\right) + \frac{\Delta t}{2}\frac{f_{i}(t + \Delta t)}{m_{i}} : \frac{1}{2}\Delta t$ $RATTLE_{V}\left(t + \frac{1}{2}\Delta t \rightarrow t + \Delta t\right)(v_{i}) : \Delta t$ $Thermostat\left(t + \frac{1}{2}\Delta t \rightarrow t + \frac{3}{4}\Delta t\right) : \frac{1}{4}\Delta t$ $Barostat\left(t + \frac{1}{2}\Delta t \rightarrow t + \Delta t\right) : \frac{1}{2}\Delta t$ $Thermostat\left(t + \frac{3}{2}\Delta t \rightarrow t + \Delta t\right) : \frac{1}{4}\Delta t$ $r_{i}(t + \Delta t), v_{i}(t + \Delta t), f_{i}(t + \Delta t)$

Choosing the coupling time constants

ENERGY FLUCTUATION / kJ.mol -1

FIG. 2. Root means square fluctuations in kinetic, total, and potential energies, measured over several 0.1 ps simulations of liquid water.

Berendsen *et al.*, *J. Chem. Phys.*, **81**, 3684, (1984).

The time constants to do with thermostats/barostats control the exchange of energy between the system and the reference baths.

Long time constants will result in slow equilibration.

Short time constants will interfere with the simulation results, particularly those dependant on fluctuations.

The compromise is system dependant and requires experiment!

CG & Dissipative Particle Dynamics

- Similar methodology to classical MD:
 - Condensed phase system modelled by particles ('beads') using pairwise potentials
 - Particle motion determined by force integration (e.g. Velocity Verlet)
 - System properties at equilibrium calculated as ensemble averages
- System coupled to heat bath using pairwise dissipative and random forces
 - Pairwise thermostatting conserves system momentum and produces correct hydrodynamics

Dissipative Particle Dynamics

Coarse Grained MD

DPD Algorithm – I

• Dissipative force:

Relative velocity between particles

$$\mathbf{F}_{ij}^{D} = -\gamma w^{D} (r_{ij}) (\hat{\mathbf{r}}_{ij} \cdot \overset{\dagger}{\mathbf{v}}_{ij}) \hat{\mathbf{r}}_{ij}$$

Distance-based screening function

Random force:

Gaussian random number (zero mean, unity variance)

$$\mathbf{F}_{ij}^{R} = \sigma w^{R} (r_{ij}) \frac{\xi_{ij}^{\downarrow}}{\sqrt{\Delta t}} \, \hat{\mathbf{r}}_{ij}$$

• Fluctuation-dissipation theory demonstrates these forces act as thermostat if:

$$w^{D}(r_{ij}) = [w^{R}(r_{ij})]^{2}$$
 and $\sigma^{2} = 2k_{B}T\gamma$

Dissipative force parameter related to fluid viscosity

DPD Algorithm – II

• Conservative force <u>often</u> selected as

$$\mathbf{F}_{ij}^{C} = A_{ij} \left(1 - \frac{r_{ij}}{r_{c}} \right) \hat{\mathbf{r}}_{ij}$$

Interaction length (cutoff radius)

although this is not necessary for a coarse-grained (CG) MD

- Quadratic potential: soft and repulsive
- Gives quadratic equation of state for fluid:

 $p \approx \rho k_B T + 0.101 A_{ij} \rho^2 r_c^4$

- Soft potential allows for larger time steps than classical MD: beads can 'pass through' each other and reach equilibrium in fewer time steps
- Flexible definition of beads: either coarse-grains or 'momentum carriers'

DPD Capabilities

- Flexible interactions between species pairs
 - Can specify e.g. hydrophobicity
 - Interaction parameters can be connected to Flory-Huggins solution theory
- Bond interactions
 - Allow for construction of 'molecules' from differently interacting beads
 - Example: spontaneous vesicle formation of amphiphilic molecules in solution

DPD via DL_MESO

 Example: formation of water drops on hydrophobic surface under influence of gravity

Å,

and heat transfer using dissipative particle Dynamics, Dept. Energy Sci., Lund University (2012)

Other Integration Algorithms

- Gear Predictor-Corrector generally easily extendable to any high order of accuracy. It is used in satellite trajectory calculations/corrections. However, lacking long term stability.
- Trotter derived evolution algorithms generally easily extendable to any high order of accuracy. Symplectic.

UK Research

Base Functionality

- Molecular dynamics of polyatomic systems with options to save the micro evolution trajectory at regular intervals
- Optimisation by conjugate gradients method or zero Kelvin annealing
- Statistics of common thermodynamic properties (temperature, pressure, energy, enthalpy, volume) with options to specify collection intervals and stack size for production of rolling and final averages
- Calculation of RDFs and Z-density profiles
- Temperature scaling, velocity re-Gaussing
- Force capping in equilibration

Velocity re-Scaling

To get around the problem of temperature drift we can simply remove or inject kinetic energy by scaling the velocities in the initial stages of the calculation:

$$T = \frac{2}{3Nk_B} \langle K.E. \rangle \qquad KE(t) = \frac{1}{2} \sum_i m_i \left| s.\underline{v}_i(t) \right|^2 \qquad s = \left(\frac{T(set)}{T(t)}\right)^{1/2}$$

Where *T(set)* is the target temperature for the simulation. This technique is referred to as velocity scaling and is used during the equilibration period of the simulation.

Specialised Functionality

- Radiation damage driven features:
 - defects analysis
 - boundary/stochastic thermostats
 - volumetric expansion (integer) *nfold Nx Ny Nz*
 - replay history
 - variable time step algorithm
- Extra ensembles:
 - DPD, Langevin, Andersen, MTK, GST
 - extensions of NsT to NP_nAT and $NP_n\gamma T$
- Infrequent k-space Ewald evaluation
- Direct VdW/Metal
- Force shifted VdW
- I/O driven features Parallel I/O & netCDF
- Extra Reporting (& opting out of nagging)
- Extensions: PLUMED, OpenKIM
- VdW potentials mixing schemes

Science & Technology Facilities Council

CONTROL for Equilibration

DL_POLY_4 GENERIC EQUILIBRATION SET OF CONTROL DIRECTIVES

temperature	300	Kelvin
pressure	0.001	k-atmospheres

#ensemble nst ber 0.75 1.7 # uncomment only for non-liquid or non-bio/organo-chemical systems!!!
#ensemble nst ber 0.75 1.7 orth # uncomment for non-liquid or non-bio/organo-chemical systems!!!

step 0.0	015 pico-second	S
0.11	Angstroms	
0.04	Angstroms	
0.005	pico-seconds	
3000		
1500		
7		
ry 70		
1000	k-T/Angstrom	
	step 0.0 0.11 0.04 0.005 3000 1500 7 ry 70 1000	step 0.0015 pico-seconds 0.11 Angstroms 0.04 Angstroms 0.005 pico-seconds 3000 1500 7 ry 70 1000 k-T/Angstrom

#zero fire 12 # uncomment for really bad starting configurations!!!

#minimise force 115 10.0 # uncomment only for non-liquid or non-bio/organo-chemical systems!!!
#minimise dist 115 0.06 # uncomment for liquid or bio/organo-chemical systems (solvent/H motion)!

#rlxtol 75 # uncomment for models with difficult relaxed shell convergence#shake1.0e-7force units # uncomment for making constrained units good for rigid bodyshake1.0e-5force units

cutoff10.0Angstrom # remember 3 (2-5) times the largest sigma from LJ interactionsewald precision1.0e-5# 1.0e-6 for non-metallic solids & lonic Liquids!

finish

DL_POLY I/O Files

I/O Files

- Crystallographic (Dynamic) data
- Reference data for DEFECTS
- Traj. data for replay
- Simulation controls
- Molecular/Topologic al Data

Tabulated

- Final & CGM configurations
- Best CGM configuration
- Simulation summary data
- Trajectory data
- Defects data
- Statistics data
- RSD, MSD & T_{inst} data
- VAF data

- Intra PDF data
- Inter PDF/RDF data
- Z density data Restart data

DL_POLY Units

Internally, DL_POLY uses atomic scale units:

- Mass mass of H atom (D) [Daltons]
- Charge charge on proton (e)
- Length Angstroms (Å)
- Time picoseconds (ps)
- Force D Å ps⁻²
- Energy D Å² ps⁻² [10 J mol⁻¹]
- \cdot Temperature is expressed in Kelvin for I/O
- \cdot Pressure is expressed in k-atm for I/O
- Angles are expressed in degrees (not radians)

Acceptable DL_POLY Units

UNITS directive in FIELD file allows to opt for the following energy units

- Internal DL_POLY units
- Electron-volts
- kilo calories per mol
- kilo Joules per mol
- Kelvin per Boltzmann

- 10 J mol⁻¹
- eV
- k-cal mol⁻¹
- **k-J mol**-1
- K Boltzmann⁻¹

All interaction MUST have the same energy units! Not only in FIELD but in TABLE, TABEAM, TAB*INT*!

CONTROL File

SIMULATION CONTROL

- Free Format
- Mandatory
- Driven by *keywords*:

keyword [options] {data} e.g.:

ensemble NPT Hoover 1.0 8.0

DL_POLY TEST CASE 1: K Na disilicate glass

	temperature	1000.0
	pressure	0.0000
	ensemble nve	
	steps	500
	equilibration	200
	multiple step	5
	scale	10
	print	10
	stack	100
	stats	10
	rdf	10
	timestep	0.0010
	primary cutoff	9.0000
	cutoff	12.030
	delr width	1.0000
	rvdw cutoff	7.6000
	ewald precision	1.0E-5
	print rdf	
	job time	1200.0
	close time	100.00
8	Long an an	

finish

n

CONFIG [REVCON,CFGMIN] File

- Initial atomic coordinates
- Format
 - Integers (I10)
 - Reals (F20)
 - Names (A8)
- Mandatory
- Units:
 - Position Angstroms (Å)
 - Velocity Å ps⁻¹
 - Force D Å ps⁻²
- Construction: Some kind of GUI or DL_FIELD essential for complex systems

	2 J		
	24.1790000000	.0000000000	.0000000000
	.0000000000	24.1790000000	.000000000
	.0000000000	.0000000000	24.1790000000
Na+	1		
	-10.189/0354	-11.145539/5	2.950816701
	-10.92491513	-11.32922344	-1.683043107
33C	8078.967958	7831,492182	14290.88665
K_+	2		(74) - 885-800-8355
	4.203354201	-6,599949388	11.67055019
	4336920163	-8.629860244	.5802665381
	14372.08258	9808.543805	4104.320538
Na+	3		
	11.90756913	-3.986750583	.8846158473
	7.418084829	-6.374985769	3.895762997
	-1417.528114	-3882,775455	906.1837533
K_+	4		
	3.507280530	-7.793662912	-6.292661606
	10.31603370	-10.41715131	-4.280009692
	2416.375138	1825.582828	4092.039688
Na+	5		
	3.461171708	-7.578232190	5.932411530
	-1.095217789	-1.174904220	-3.990554703
	-10432.37938	6228.183582	-10280.33991
K_+	6		
	5.950806200	-6.205017024	6.104974282
	9325536022E-01	-6.757387763	2.025695932
	-2228.699102	-4655.604575	10544.62228
Na+	7		
	-2.842267238	7.394332997	1.865677792
	-17.68579103	4,615099801	2.644830030
	253,4967609	3720.053118	408.3262594
	9944405997/11/2014-91/FCF1512		

FIELD File

•	Force Field specification	DL_POLY TEST CASE 4: Water dynamical shell model
•	Mandatory	UNITS kJ
•	Format:	NEUTRAL GROUPS MOLECULAR TYPES 1
	• Integers (I5)	NUMMOLS 256
	• Reals (F12)	ATOMS 4 DW 15.0000 -0.32 1 0 1
	• Names (A8)	HW 1.0000 0.41 2 0 1
	• Keywords (A4)	U_shell 1.0000 -0.50 1 0 1 SHELL 1
•	Maps on to CONFIG file structure	RIGID UNITS 1 3 1 2 3 EINISH
•	Construction	VDW 5
	• Small systems - by hand	O_shell O_shell lj .36854 3.1650 O_shell OW lj .21059 3.1650
	 Large systems - nfold or 	OW OW 1j .05265 3.1650 OW HW 1j .00000 3.1650
	GUI OF DL_FIELD!	U_SNEII HW IJ .00000 3.1650 CLOSE

TABLE File

- Defines non-analytic pair (vdw) potentials
- Format
 - Integers (I10)
 - Reals (F15)
 - Names (A8)
- Conditional, activated by FIELD file option
- Potential & Force
- NB force (here) is:

	<u>^</u>
$C(\mathbf{n})$	- C $U(n)$
G(r)	$=-r-\frac{1}{2}U(r)$
	Or

DL_POLY TEST CAS	E 1: Silica Pot	entials	
1.5212170E-03	7.600000E+00	5000	
Si4+ 0_2-			
9.5140002E+06	9.4702042E+06	9.4266099E+06	9.3832162E+06
9.3400223E+06	9.2970273E+06	9.2542301E+06	9.2116300E+06
9.1692260E+06	9.1270171E+06	9.0850026E+06	9.0431815E+06
9.0015529E+06	8.9601159E+06	8.9188696E+06	8.8778133E+06
8.8369459E+06	8.7962667E+06	8.7557747E+06	8.7154691E+06
8.6753490E+06	8.6354137E+06	8.5956621E+06	8.5560936E+06
8.5167072E+06	8.4775021E+06	8.4384775E+06	8.3996325E+06
8.3609664E+06	8.3224782E+06	8.2841672E+06	8.2460326E+06
8.2080735E+06	8.1702892E+06	8.1326787E+06	8.0952415E+06
8.0579765E+06	8.0208831E+06	7.9839605E+06	7.9472078E+06
7.9106243E+06	7.8742092E+06	7.8379617E+06	7.8018811E+06
7.7659666E+06	7.7302174E+06	7.6946328E+06	7.6592120E+06
7.6239542E+06	7.5888587E+06	7.5539248E+06	7.5191517E+06
7.4845387E+06	7.4500850E+06	7.4157899E+06	7.3816527E+06
7.3476726E+06	7.3138490E+06	7.2801810E+06	7.2466681E+06
7.2133094E+06	7.1801042E+06	7.1470520E+06	7.1141518E+06
7.0814031E+06	7.0488052E+06	7.0163573E+06	6.9840588E+06
6.9519090E+06	6.9199072E+06	6.8880527E+06	6.8563448E+06
6.8247829E+06	6.7933663E+06	6.7620942E+06	6.7309662E+06
6.6999814E+06	6.6691393E+06	6.6384392E+06	6.6078803E+06
6.5774622E+06	6.5471841E+06	6.5170453E+06	6.4870453E+06
6.4571834E+06	6.4274589E+06	6.3978713E+06	6.3684199E+06
6.3391041E+06	6.3099232E+06	6.2808766E+06	6.2519637E+06
6.2231840E+06	6.1945367E+06	6.1660213E+06	6.1376372E+06
6.1093837E+06	6.0812603E+06	6.0532663E+06	6.0254012E+06
5.9976644E+06	5.9700553E+06	5.9425732E+06	5.9152177E+06
5.8879881E+06	5.8608838E+06	5.8339043E+06	5.8070490E+06
5.7803173E+06	5.7537087E+06	5.7272226E+06	5.7008584E+06

TABEAM File

- Defines embedded atom potentials
- Format
 - Integers (I10)
 - Reals (F15)
 - Names (A8)
- Conditional, activated by FIELD file option
- Potentials only
- pair, embed & dens keywords for atom types followed by data records (4 real numbers per record)
- Individual interpolation arrays

& Technology UI

REVOLD [REVIVE] File

- Provides program restart capability
- File is unformatted (not human readable)
- Contains thermodynamic accumulators, RDF data, MSD data and other checkpoint data
- REVIVE (output file) ---> REVOLD (input file)

OUTPUT File

- Provides Job Summary (mandatory!)
- Formatted to be human readable
- Contents:
 - Summary of input data
 - Instantaneous thermodynamic data at selected intervals
 - Rolling averages of thermodynamic data
 - Statistical averages
 - Final configuration
 - Radial distribution data
 - Estimated mean-square displacements and 3D diffusion coefficient
- Plus:
 - Timing data, CGM and relaxed shell model iteration data
 - Warning & Error reports

STATIS File

- System properties at intervals selected by user
- Optional
- Formatted (I10,E14)
- Intended use: statistical analysis (e.g. error) and plotting vs. time.
- Recommend use with GUI!
- Header:
 - Title
 - Units
- Data:
 - Time step, time, #entries
 - System data

DL_POLY TEST CASE 1: K Na dis	silicate glass	structure	
ENERGY UNITS = DL POLY Inter	nal UNITS		
10 1.000000E-02	40		
-3.205280E+08 1.008482E+03	-3.218852E+08	8.415979E+07	-4.070454E+08
0.000000E+00 1.000478E+06	0.000000E+00	0.000000E+00	-3.032144E+08
0.000000E+00 -4.922665E+07	-4.517780E+08	4.070324E+08	0.000000E+00
-4.480974E+06 0.000000E+00	0.000000E+00	1.413562E+04	0.000000E+00
0.000000E+00 0.000000E+00	9.000000E+01	9.000000E+01	9.000000E+01
0.000000E+00 2.006775E+02	0.000000E+00	0.000000E+00	0.000000E+00
0.000000E+00 2.167462E+02	-2.966174E+00	9.929801E-01	-2.966174E+00
1.954298E+02 2.026411E+00	9.929801E-01	2.026411E+00	1.898565E+02
20 2.000000E-02	40		
-3.205146E+08 9.854523E+02	-3.218408E+08	8.420167E+07	-4.070089E+08
0.000000E+00 9.664992E+05	0.000000E+00	0.000000E+00	-3.030159E+08
0.000000E+00 -4.984402E+07	-4.521951E+08	4.069810E+08	0.00000E+00
-4.629916E+06 0.000000E+00	0.000000E+00	1.413562E+04	0.00000E+00
0.000000E+00 0.000000E+00	9.000000E+01	9.000000E+01	9.000000E+01
0.000000E+00 2.028233E+02	0.000000E+00	0.000000E+00	0.00000E+00
0.000000E+00 2.133485E+02	1.064831E-01	-6.994367E+00	1.064831E-01
1.992877E+02 -9.291212E-01	-6.994367E+00	-9.291212E-01	1.958336E+02
30 3.000000E-02	40		
-3.205199E+08 1.016426E+03	-3.218877E+08	8.443556E+07	-4.073304E+08
0.000000E+00 1.007151E+06	0.000000E+00	0.000000E+00	-3.029124E+08
0.000000E+00 -5.008689E+07	-4.529860E+08	4.073139E+08	0.000000E+00
-4.414858E+06 0.000000E+00	0.000000E+00	1.413562E+04	0.000000E+00
0.000000E+00 0.000000E+00	9.000000E+01	9.000000E+01	9.000000E+01
0.000000E+00 2.040837E+02	0.000000E+00	0.000000E+00	0.000000E+00
0.000000E+00 2.178241E+02	6.607459E+00	-1.175251E+01	6.607459E+00
1.898177E+02 -4.690431E-01	-1.175251E+01	-4.690431E-01	2.046095E+02
40 4.000000E-02	40		
-3.205438E+08 1.008437E+03	-3.219008E+08	8.419891E+07	-4.070237E+08
0.000000E+00 9.239793E+05	0.000000E+00	0.000000E+00	-3.032935E+08
0.000000E+00 -4.903683E+07	-4.520697E+08	4.070132E+08	0.000000E+00
-3.980336E+06 0.000000E+00	0.000000E+00	1.413562E+04	0.000000E+00
0.000000E+00 0.000000E+00	9.000000E+01	9.000000E+01	9.000000E+01

HISTORY [HISTORF] File

•	Configuration data at user
	selected intervals

- Formatted
- Optional
- Header:
 - Title
 - Data level, cell key, number
- Configuration data:
 - Time step and data keys
 - Cell Matrix
 - Atom name, mass, charge
 - X,Y,Z coordinates (level 0)
 - X,Y,Z velocities (level 1)
 - X,Y,Z forces (level 2)

DL POLY TEST	CASE 10: DNA Str	and in SPC Wate		
- 2	7 337	8	• 0. 	
timestep	1 3378	2	7	0.001000
52.00	0.000 0.	000		
0.000	30.02 0.	000		
0.000	0.000 64	.34		
P_3	1 30.97380	0 1.165900		
-8.6522E+00	4.6430E+00 -3.1	314E+01		
3.8840E+00	7.9765E-01 -2.1	608E+00		
-9.8599E+02	1.1857E+03 1.9	631E+03		
0_2	2 15.99940	0 -0.776100		
-9.8537E+00	3.8644E+00 -3.1	469E+01		
3.1055E+00	2.7294E+00 -5.9	096E+00		
-1.3153E+03	2.2118E+03 1.2	624E+02		
0_2	3 15.99940	0 -0.776100		
-8.1115E+00	3.6735E+00 3.2	111E+01		
4.3244E+00	1.7421E+00 -2.9	006E+00		
1.5923E+03	1.6067E+03 1.2	143E+03		
O_3	4 15.99940	0 -0.495400		
-8.4095E+00	3.7741E+00 -3.0	066E+01		
-3.7534E+00	1.5520E+00 -1.2	485E-01		
1.6786E+03	7.2103E+02 2.4	525E+02		
C_3	5 12.01100	0 -0.006900		
-8.2889E+00	4.2697E+00 -2.8	741E+01		
-3.2596E+00	1.1117E+00 -4.9	447E-03		
-3.9063E+02	2.3338E+02 4.4	700E+02		
Н_	6 1.00800	0 0.075400		
-7.9345E+00	3.3762E+00 -2.8	227E+01		
9.5048E+00	1.0488E+01 7.7	937E+00		
-2.4981E+03	-4.9711E+02 4.6	945E+02		
H_	7 1.00800	0 0.075400		
-9.2952E+00	4.5264E+00 -2.8	410E+01		
-6.0025E+00	6.4848E+00 -1.2	228E+01		
3.5275E+02	-1.2279E+03 1.8	052E+03		

RDFDAT [ZDNDAT] File

- Formatted (A8,I10,E14)
- Plotable
- Optional
- RDFs from pair forces
- Header:
 - Title
 - No. plots & length of plot
- RDF data:
 - Atom symbols (2)
 - Radius (A) & RDF
 - Repeated...
- ZDNDAT file has same format

Silver Iodide A	lpha Phase
3	160
yd+ yd+	
2.375000E+00	1.932754E-03
2.425000E+00	7.415510E-03
2.475000E+00	7.118930E-03
2.525000E+00	1.196964E-02
2.575000E+00	1.315351E-02
2.625000 E+ 00	1.582152E-02
2.675000E+00	3.199477E-02
2.725000E+00	3.964044E-02
2.775000E+00	5.662942E-02
2.825000E+00	7.786575E-02
2.875000E+00	1.002413E-01
2.925000E+00	1.197803E-01
2.975000E+00	2.020131E-01
3.025000E+00	2.501949E-01
3.075000E+00	2.594195E-01
3.125000E+00	3.460766E-01
3.175000E+00	4.152931E-01
3.225000E+00	5.335431E-01
3.275000E+00	5.824296E-01
3.325000E+00	7.090180E-01
3.375000E+00	7.570784E-01
3.425000E+00	8.996351E-01
3.475000E+00	9.226854E-01
3.525000E+00	1.020409E+00
3.575000E+00	1.103812E+00
3.625000E+00	1.164834E+00
3.675000E+00	1.147884E+00
3.725000E+00	1.247703E+00
3.775000E+00	1.328861E+00
3.825000E+00	1.342782E+00
3.875000E+00	1.380233E+00
3.925000E+00	1.393415E+00
3.975000E+00	1.416540E+00
4.025000E+00	1.436074E+00

Other Extra Files

- REFERENCE file
 - Reference structure to compare against
- · DEFECTS file
 - Trajectory file of vacancies and interstitials migration
- · MSDTMP file
 - Trajectory like file containing particles' Sqrt(MSD_{mean}) and T_{mean}
- · RSDDAT file
 - Trajectory like file containing particles' Sqrt(RSD from origin)
- TABINT file
 - Table file for INTra-molecular interactions
- · INTDAT file
 - Probability Distribution Functions for INTra-molecular interactions
- · HISTORF file

• ...

- Force replayed HISTORY

DL_POLY_4 Performance

Proof of Concept

300,763,000 NaCl with full SPME electrostatics evaluation on 1024 CPU cores

IBM p575 2004/5Cray XE6 2013/4• Start-up time $\approx 60 \text{ min}$ $\approx 15 \text{ min}$ • Timestep time $\approx 68 \text{ sec}$ $\approx 23 \text{ sec}$ • FFT evaluation $\approx 55 \text{ sec}$ $\approx 18 \text{ sec}$

In theory ,the system can be seen by the eye. Although you would need a very good microscope – the MD cell size for this system is $2\mu m$ along the side and as the wavelength of the visible light is $0.5\mu m$ so it should be theoretically possible.

Benchmarking BG/L Jülich 2007

Weak Scaling

RB v/s CB Performance & Scalability

HECTOR (Cray XE6) 2013

Weak Scaling and Cost Complexity

I/O Solutions

- Serial read and write (sorted/unsorted) where only a single MPI task, the master, handles it all and all the rest communicate in turn to or get broadcasted to while the master completes writing a configuration of the time evolution.
- 2. Parallel write via direct access or MPI-I/O (sorted/unsorted) where ALL / SOME MPI tasks print in the same file in some orderly manner so (no overlapping occurs using Fortran direct access printing. However, it should be noted that the behaviour of this method is not defined by the Fortran standard, and in particular we have experienced problems when disk cache is not coherent with the memory).
- 3. Parallel read via MPI-I/O or Fortran

 Serial NetCDF read and write using NetCDF libraries for machineindependent data formats of array-based, scientific data (widely used by various scientific communities).

The Advanced Parallel I/O Strategy

N compute cores of which M < N do I/O

HECToR (Cray XE6) 2013

- 72 I/O NODES
- READ ~ 50-300 Mbyte/s with best performance on 16 to 128 I/O Groups
- WRITE ~ 50-150 Mbyte/s with best performance on 64 to 512 I/O Groups
- Performance depends on user defined number of I/O groups, and I/O batch (memory CPU to disk) and buffer (memory of comms transactions between CPUs)
- Reasonable defaults as a function of all MPI tasks are provided Science & Technology Facilities Council

Obtaining & Building DL_POLY

DL_POLY_4 Licensing & Support

- Online Licence Facility at http://www.ccp5.ac.uk/DL_POLY/
- The licence is
 - To protect copyright of STFC Daresbury Laboratory
 - To reserve commercial rights
 - To provide documentary evidence justifying continued support by UK Research Councils (UKRI)
- It covers only the DL_POLY_4 package
- Registered users are entered on the DL_POLY mailshot list
 - Support is available (under CCP5 & MCC SLA via EPSRC) only to UK academic researchers
 - For the rest of the world there is the JISC Community List
- Last but not least there is a detailed, interactive, selfreferencing PDF (LaTeX) user manual

Supply of DL_POLY_4

- Register at http://www.ccp5.ac.uk/DL_POLY/
- Registration provides a decryption key, sent by e-mail
- Source is provided as an encrypted ZIP file on the FTP
- Successful unpacking produces a unix directory structure
- TEST, BENCH and TUTORIAL data are also available on the FTP

DL_POLY_Classic Support

- Full documentation of software supplied with source
- Support is available through the CCP5 user community

WWW:

http://www.ccp5.ac.uk/DL_POLY_CLASSIC/

FTP:

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/

COMM:

http:/www.jiscmail.ac.uk/DLPOLY/

Supply of DL_POLY_Classic

- Downloads are available from CCP5 website
- No registration required BSD licence
- Sources is a in tarred and gzipped form
- Successful unpacking produces a unix directory structure
- Test data are also available

DL_POLY Directory Structure

Part 6

Usability

DL_POLY & Project ATEN

DL_POLY & VMD

- VMD is a free software package for visualising MD data.
- Website: <u>http://www.ks.uiuc.edu/Research/vmd/</u>
- Useful for viewing snapshots and movies.
 - A plug in is available for DL_POLY HISTORY files
 - Otherwise convert HISTORY to XYZ or PDB format

UK Research

and Innovation

DL_FIELD/ANALYSER

Developed by Chin Yong

http://www.ccp5.ac.uk/DL_FIELD/

- Orgainic Fields AMBER+Glycam, CHARM, OPLS-AA, PCFF, Drieding, CHARM19 (united atom)
- Inorganic Fields including a core-shell polarisation option
- Solvation Features, Auto-CONNECT feature for mapping complex random structures such as gels and random polymers
- input units freedom and molecular rigidification

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/TUTORIAL/

DL_POLY Hands-On

Thank You

500 keV cascade in 200 million Fe system using TTM

Electronic effects in high-energy radiation damage in iron, E. Zarkadoula, S.L. Daraszewicz, D.M. Duffy, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove and K. Trachenko, J. Phys.: Condens. Matter 26 (2014) 085401 (8pp doi:10.1088/0953K Research 8984/26/8/085401

Part 7

The DL_POLY Java GUI W. Smith

GUI Overview

- Java is Free!
- Facilitate use of code
- Selection of options (control of capability)
- Construct (model) input files
- Control of job submission
- Analysis of output
- Portable and easily extended by user

Compiling/Editing the GUI

- Edit source in *java* directory
- Edit using vi, emacs, nano, gedit, *whatever*
- Compile in *java* directory:

javac *.java

jar -cfm GUI.jar manifesto *.class

• Executable is GUI.jar

• But.....

****Don't Panic!****

The GUI.jar file is provided in the download or may be not

Invoking the GUI

 Invoke the GUI from within the *execute* directory (or equivalent):

java -jar ../java/GUI.jar

• Colour scheme options:

java -jar ../java/GUI.jar -*colourscheme*

with *colourscheme* one of: monet, vangoch, picasso, cezanne, mondrian (default picasso).

The Monitor Window

Using Menus

The Molecular Viewer

The Molecular Editor

Available Menus

- File Simple file manipulation, exit etc.
- FileMaker make input files:
 - CONTROL, FIELD, CONFIG, TABLE
- Execute
 - Select/store input files, run job
- Analysis
 - Static, dynamic, statistics, viewing, plotting
- Information
 - Licence, Force Field files, disclaimers etc.

A Typical GUI Panel

