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Monte Carlo
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Ulam reinvented the method while working on the nuclear weapons project in 1946. This 

required a code name, which was taken from the Monte Carlo Casino where Ulam's

uncle gambled.



Overview

Monte Carlo is a stochastic molecular simulation technique

Sampling can be biased towards regions of specific interest

NOT constrained by natural timescales  (in marked contrast with 

molecular dynamics)

Straightforward to work at constant pressure (NPT) and can easily

cope with fluctuating numbers of particles (via the grand canonical 

ensemble)

No (physical) dynamic foundation

3



4

Buffon’s Needle

"Pi 30K" by CaitlinJo - Own work. This 

mathematical image was created with 

Mathematica. Licensed under CC BY 3.0 via 

Commons -

https://commons.wikimedia.org/wiki/File:Pi_30K

.gif#/media/File:Pi_30K.gif

Finding π the Monte Carlo way



Thermodynamic Monte Carlo

Unlike energy minimization, in Monte Carlo, configurations are 

generated by making random changes to the positions of the atoms 

or molecules present. As the calculation proceeds statistical averages

are calculated to obtain the thermodynamic properties of the 

system.

In both Monte Carlo and molecular dynamics a box is set up 

containing the atoms or molecules of interest (can be up to up to 106

using modern computers).  To simulate a liquid or solid the box is 

usually surrounded with replicas of the original box, avoiding an 

unwanted interface at the sides, i.e., we use periodic boundary 

conditions. Whenever a particle leaves the box through one of its 

faces, its image arrives through the opposite face so that the total 

number of particles remains constant.



Periodic boundary 

conditions

• If we wish to calculate a particular property Q of a system with a constant 

number of particles, temperature and volume (the canonical ensemble – usually 

referred to as NVT) the average value of that property <Q> is
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• Usually use the famous Metropolis algorithm - biases generation of 

configurations towards those that make the most significant contribution.

• So Monte Carlo method generates configurations randomly and uses the 

Metropolis scheme to decide whether or not to accept each new 

configuration.  These criteria ensure that the probability of obtaining a 

given configuration is equal to its Boltzmann factor exp(–U(Z)/kT).

• U(Z) calculated almost always using interatomic or intermolecular 

potentials. Configurations with low energy generated with a higher 

probability than high energy ones.  At each step calculate values of the 

desired properties - as simulation proceeds, the averages of these 

properties are obtained by simply averaging over the number M of values 

calculated.
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The Metropolis algorithm



Each new configuration may be generated by randomly moving a single 

atom or molecule, or new configurations obtained by moving several 

atoms or molecules, or by rotating about one of more bonds.

U(Z) calculated for new configuration.



If energy of new configuration lower than the energy of its predecessor 

then accept new configuration.

If energy of new configuration higher then its predecessor then calculate 

the Boltzmann factor of the energy difference. 

A random number between 0 and 1 is then generated and compared 

with this Boltzmann factor. If this random number higher than the 

Boltzmann factor then move is rejected and original configuration kept 

for the next step.  If this random number is lower, then move is  accepted

and new configuration becomes the next state. 

Thus some moves are to states of higher energy. 

The smaller the uphill move, the greater the chance the move will be 

accepted. 



A bit more theory – why it works

If we don’t know the value of the partition function and we can’t easily 

calculate it, are we stuck?
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How do we choose states with probability p(U(Z))?

It turns out we can do it without knowing the partition function!  We use 

a Markov Chain. 

We choose a set of states for the sum to work out the thermodynamic 

averages. We do this by generating a set of states one after the other –

the Markov Chain. Suppose we take a state i and make some change, 

usually small, to create a new state j (e.g., move one of the atoms a little, 

or swap two atoms). The choice of the new state is determined by 

probabilities – by a set of transition probabilities Tij.  Tij gives the 

probability of changing from i to j.
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Why it works (2)

If we choose Tij appropriately we can ensure that the probability of 

visiting any particular state on any step of the Markov Chain is exactly the 

Boltmann probability p(U(Z)) so that when we take many steps the set of 

states through which we move is a correct sample of our Boltzmann 

distribution. 

Then if we are interested in a quantity X all we have to do is measure the 

value in each state and take the average.
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Why it works (3)

The secret of the Markov Chain method is to choose the Tij such that
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And wonderfully the partition function Q cancels out of this equation!



Why it works (4)

So under the Metropolis scheme if the proposed move will decrease the 

energy of the system or keep it the same then we definitely accept it .  If 

the proposed move will increase the energy then we may still accept it –

with probability �	
���	���.	 The probability of making a move from i to j

is the probability that we choose that move out of all possibilities, which 

is 1/R if there are R possibilities, multiplied by the probability that we 

accept the move. So if for instance �� � ��
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as required.

It is possible to prove that if we wait long enough the distribution of 

states in the Markov chain will always converge to the Boltzmann 

distribution; the important point is that if we start off the system in a any 

random state and run the Markov chain for long enough the distribution 

of states will converge to the Boltzmann distribution.



Can also carry out Monte Carlo simulations with a constant number of particles, 

temperature and pressure (the NPT ensemble).  In such simulations, in addition to 

random moves of the atoms or molecules, also attempt random changes in the 

volume of the simulation cell. In Metropolis step U(Z)+PV replaces U(Z).

Monte Carlo 

calculations, both 

NVT and NPT, have 

been extremely 

useful in 

establishing 

equations of state. 

MgF
2

– calculated 

lattice parameters vs. 

T.

MC Monte Carlo

MD Molecular 

dynamics

QLD Direct free energy 

minimisation using 

Quasiharmonic Lattice 

Dynamics. 

Monte Carlo in other ensembles



Other Monte Carlo Simulations

Monte Carlo simulations also useful for the study of alloys and solid 

solutions, calculating enthalpies of mixing and detailed information about 

the structure of such solutions.

In these explicit exchanges of the different types of atoms present in the 

alloy are attempted, thus sampling many different configurations or atomic 

arrangements.  Beyond mean field theory!



Swap

Relax

When looking at solid solutions of 

oxides or halides (or more generally 

in grossly non-stoichiometric 

materials) need to be able to take 

account of local structural relaxation, 

and clustering, particularly important 

when ions have different sizes and/or 

charges.
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In Monte Carlo Exchange simulations any step may attempt a 

movement of an atom, or a change in size of the simulation 

box or an explicit exchange of two different cations.



These simulations also revealed an intriguing local ordering of 

the Ca and Mg ions such that third nearest cation neighbours

of the same type are avoided at low temperatures.  This has 

some intriguing consequences for the incorporation of other 

trace elements in the solid solution – these are more soluble

than in either end member, i.e., pure pyrope or pure 

grossular.  Also under certain circumstances large cations may 

preferentially substitute for Mg rather than Ca even on side 

grounds the reverse would be expected.  Anti-Goldschmidt 

behaviour.



Case study - Spinel

AB
2
O
4
: contains both tetrahedral and 

octahedral cation sites.

Normal spinel: A-type cations occupy only
tetrahedral sites, while B-type cations occupy 
only octahedral sites.

Inverse spinel: tetrahedral sites occupied by B 
only. Octahedral sites occupied by both A and 
B.

In real systems, distribution of cations 
between the sites more complicated and 
varies with T.



Order parameter Q for MgAl
2
O
4
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Define order parameter Q = 1-3x/2

Q = 1 ⇒ fully ordered normal spinel

Q = -0.5 ⇒ inverse

Random distribution ⇒ Q = 0

All calculations Monte Carlo Exchange

Kinetics vs. thermodynamics: very 

important



Other Monte Carlo Simulations

Many Monte Carlo simulations of magnetic ordering and 

its variation with temperature.  Such models assume a 

particular form for the magnetic interactions, e.g, the Ising

or Heisenberg Hamiltonian.

Monte Carlo simulations have had important roles in 

developing an understanding of behaviour approaching 

critical points, and in establishing the fundamental physics 

responsible for the values of critical exponents.



• 3 basic moves - attempts to move an 

atom, to destroy a particle, and to create a 

particle at a random position. 

• Useful for calculating isotherms for 

adsorption of noble gases and 

hydrocarbons in zeolites - pressure can be 

directly calculated from the input chemical 

potential.  Also examine the atomic 

mechanisms responsible for selectivity of a 

given zeolite.  
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• Problems involving adsorption can be tackled using grand-canonical 

Monte Carlo.  Here the chemical potential, V and T are kept constant; the 

number of particles may change during the simulation.

Other Monte Carlo Simulations (2)    



In the grand canonical ensemble, the control variables are the 

chemical potential µ
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the volume V and the temperature T. The total particle number N is 

therefore allowed to fluctuate. 

It is related to the canonical ensemble by a Legendre transformation 

with respect to the particle number N (Statistical Mechanics Lecture)

Grand Canonical Partition function
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Closely represents the conditions under which experiments are often 

performed.

Grand-Canonical Monte Carlo



In a simulation one first chooses at random whether to attempt a 

trial particle deletion or insertion.

If insertion is chosen a particle is placed at a randomly chosen site 

inside the system.

If deletion is chosen, then one of the particles already present is 

chosen at random to be deleted. The trial move is then accepted or 

rejected according to the usual Monte Carlo Metropolis criterion.

Often there can be very low particle insertion and deletion 

probabilities, and we resort to a technique such as the 

configurational bias grand canonical technique to force such events.  

This is beyond this course! 

Grand-Canonical Monte Carlo



Why not just use molecular dynamics?

Monte Carlo can sample from ensembles that go beyond 

molecular dynamics.

Monte Carlo is not restricted to local moves:

• Grand Canonical -> Insert/remove particles 

• Swap particles -> Avoids local energy barriers

• Semi Grand-Canonical -> Trial swaps -> Free energy 

differences and phase diagrams



Many other modern developments. Hybrid Monte Carlo/ molecular 

dynamics methods. Sophisticated methods have been developed to 

address sampling and phase problems:

• Free energy methods to improve sampling

• Lattice switch methods to sample from competing methods

See Smit and Frenkel, Understanding Molecular Simulation: From 

Algorithms to Applications, 2nd edition (2001)

On the inner workings of Monte Carlo codes, 

Dubbeldam, Torres-Knoop and Walton, Molecular Simulation,

1253-1292 (2013)

Modern Monte Carlo


