

Rare Events & Free Energy

Alin M Elena

ukri stfc daresbury laboratory

May, 2019

Example

Introduction

Introduction

Example

Science & Technology Facilities Council Daresbury Laboratory

Why?

- Timescales of molecular dynamics up to micro seconds with a timestep of 1fs or less
- Disparity of timescales in simulated processes These are often dominated by rare events
- Rare but important events
 - conformational changes in proteins
 - some chemical reactions (weak acid deprotonation, ...)
 - nucleation processes
 - phase transitions

the major bottleneck of simulation these events using traditional computer simulation methods is that the waiting time for a transition between two metastable states can be orders of magnitude longer than the time for the event itself.

How?

1. Reactive flux methods, two step approaches

- i) free energy profile, ii) transmission coefficient
- Umbrella sampling
- Potential of mean contrained force (PMCF)
- temperature accelerated molecular dynamics/monte carlo
- metadynamics

2. Path sampling methods, importance sampling of dynamical trajectories

- transition path sampling
- string methods
- Milestoning
- forward flux sampling

Small stat mech recap and MD

Let us consider a system of N atoms with the associated positions, $\textbf{x}\in\mathbb{R}^{3N}$, and momenta, $\textbf{p}\in\mathbb{R}^{3N}$. The dynamics of the system is governed by the Hamiltonian H(x,p)=K(p)+U(x)

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\partial \mathrm{H}}{\partial \mathbf{p}}; \quad \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial \mathrm{H}}{\partial \mathbf{x}}$$

for ergotic dynamics

$$\overline{\mathcal{O}\left(\mathbf{x}\right)}=\left\langle \mathcal{O}\left(\mathbf{x}\right)\right\rangle$$

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_{0}^{\tau} dt \, \mathcal{O}\left(\mathbf{x}\left(t\right)\right) = \int d\mathbf{x} d\mathbf{p} \, \rho\left(\mathbf{x}, \mathbf{p}\right) \mathcal{O}\left(\mathbf{x}\right)$$

...

for a microcanonical ensemble, N,V,E

$$\rho\left(\mathbf{x},\mathbf{p}\right) = \frac{\delta\left(\mathbf{H}\left(\mathbf{x},\mathbf{p}\right) - \mathbf{E}\right)}{h^{3\mathbf{N}}\mathbf{N}!\Omega\left(\mathbf{N},\mathbf{V},\mathbf{E}\right)}; \quad \Omega\left(\mathbf{N},\mathbf{V},\mathbf{E}\right) = \int\!d\mathbf{x}d\mathbf{p}\,\delta\left(\mathbf{H}\left(\mathbf{x},\mathbf{p}\right) - \mathbf{E}\right)$$

for a canonical ensemble, N,V,T

$$\rho\left(\mathbf{x}\right) = \frac{1}{\mathcal{Z}} e^{-\beta \mathbf{U}(\mathbf{x})}; \quad \mathcal{Z} = \int d\mathbf{x} \, e^{-\beta \mathbf{U}(\mathbf{x})}$$

to sample canonical ensemble, new equations of motion are needed, Langevin, Nosé-Hoover...

collective variables

- collective variables(CV) microscopic observables that describe the process of interest, eg. chemical reaction
- order parameters: CVs that distinguish between initial and final state
- reaction coordinates CVs that describe the process along its path

mathematically they are functions

$$\theta\left(\mathbf{x}\right):\mathbb{R}^{m}\to\mathbb{R}^{n}$$

with $m \leq 3N$

...

- \blacktriangleright *n* = 1, scalar collective variables, the most common case
- \blacktriangleright *n* > 1, vectorial collective variables

most common CVs:

- bond distances
- angles
- dihedrals
- coordination number
- radius of giration
- depending on the techniques used CVs may need to be differentiable

example - butane

example - ...

landau free energy

$$\frac{dF(z)}{dz} = -\lim_{\beta k \to \infty} \frac{\int d\mathbf{x} \, k(\theta(\mathbf{x}) - z) e^{-\beta U(\mathbf{x})} e^{-\frac{\beta K}{2}(\theta(\mathbf{x}) - z)^2}}{\int d\mathbf{x} \, e^{-\beta U(\mathbf{x})} e^{-\frac{\beta K}{2}(\theta(\mathbf{x}) - z)^2}}$$
$$U_k(\mathbf{x}, z) = U(\mathbf{x}) + \frac{k}{2} (\theta(\mathbf{x}) - z)^2$$

references

- Mark Tuckerman Statistical Mechanics: Theory and Molecular Simulation (Oxford Graduate Texts)
- Tony Lelièvre, Mathias Rousset and Gabriel Stoltz Free Energy Computations A Mathematical Perspective

Introduction

Example

HF deprotonation

$(H_2O)_{aq} + (HF)_{aq} \rightleftharpoons [H_2O \cdot HF]_{aq}$

\leftarrow [H₃O⁺·F⁻]_{aq}

= [H⁺(H₂O)_n + F⁻]_{aq}

Dissociation of HF in $HF(H2O)_7$

what would we like to know?

equilibrium constant

- reaction mechanism
- reaction rate

CV

mean force

free energy profile

pka

mechanism of reaction

low z

more info

J. Phys. Chem. A 2013, 117, 49, 13039-13050, 10.1021/jp406982h

