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Why?

» Timescales of molecular dynamics - up to micro seconds with a timestep of 1fs
or less

» Disparity of timescales in simulated processes These are often dominated by
rare events

» Rare but important events

» conformational changes in proteins

some chemical reactions (weak acid deprotonation, ...)
nucleation processes

phase transitions
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the major bottleneck of simulation these events using traditional computer
simulation methods is that the waiting time for a transition between two metastable
states can be orders of magnitude longer than the time for the eventiitself.
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How?

1. Reactive flux methods, two step approaches

> i) free energy profile, ii) transmission coefficient

» Umbrella sampling

» Potential of mean contrained force (PMCF)

» temperature accelerated molecular dynamics/monte carlo
» metadynamics

2. Path sampling methods, importance sampling of dynamical trajectories

> transition path sampling
» string methods

» Milestoning

» forward flux sampling
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Small stat mech recap and MD

Let us consider a system of N atoms with the associated positions,
x € R3N and momenta, p € R33N The dynamics of the system is

governed by the Hamiltonian H(x, p) = K(p) + U(x)

dx OH dp  OH
d¢ Op’ dt  Ox

for ergotic dynamics

0 (x) = O (x))

lim 1/lef(?(x (t)) = /dxdpp(x, p) O (x)
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for a microcanonical ensemble, N,V,E

0 (H (Xa P) o E)

0008) = gt A0 V)= [ i)~

for a canonical ensemble, NV, T

|
p(x) = ZB_BUO‘); Z= /dxeBU(X)

to sample canonical ensemble, new equations of motion are needed,
Langevin, Nosé-Hoover...
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collective variables

» collective variables(CV) microscopic observables that describe the process of
interest, eg. chemical reaction

order parameters: CVs that distinguish between initial and final state
reaction coordinates CVs that describe the process along its path

vy

mathematically they are functions

0(x): R" - R”

with m < 3N
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» n = 1, scalar collective variables, the most common case
» n > 1, vectorial collective variables

most common CVs:

bond distances

angles

dihedrals

coordination number

radius of giration

depending on the techniques used CVs may need to be differentiable

vvyvyvVvyyy

& Science & Technology Facilities Council
= Daresbury Laboratory



Rare Events & Free Energy /\\
LIntroduction CC P COSeC

eeeeeeeeeeeeeeeeeeeeeee

example - butane
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example - ...
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landau free energy

products (p) 0(2) :%de e_BU(x)cS(@(X) - Z)

reactants (r)

Z :de e PUX
S
b © Fig=-5 el
o)~ Flzn) = | drr
(76)- <zA>—L o

Z

ar@) lim Jaxk(B(x)- Z)e—BUOOe—%(@(x)—z)2
JdX e—BU(X)e—%(e(x)—z)2

dz Bk—00
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references

» Mark Tuckerman - Statistical Mechanics: Theory and Molecular Simulation

(Oxford Graduate Texts)
» Tony Leliévre, Mathias Rousset and Gabriel Stoltz - Free Energy Computations A

Mathematical Perspective
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HF deprotonation

[Hy0)aq + (HF)sg =M, 0 HFly
=07 F_]aq
=" (H,0), 4 F_]aq
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Dissociation of HF in HF(H20),

reactants products
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what would we like to know?

» equilibrium constant
» reaction mechanism
» reaction rate
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<J'CKS>(X = (We | His (x) | We)
(His)g = (Wr | His (X) [we)

L6 X) = (W | Hs (%) [ wp) — (o | Fis (%) [ we)

o ; " l i §<O0covalentbondata

& > 0 covalent bond at
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free energy profile
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mechanism of reaction

high z

low 2
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more info

J. Phys. Chem. A 2013, 117, 49, 13039-13050, 10.1021/jp406982h
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