

DL_FIELD/DL_ANALYSER Force field and analysis tools for DL_POLY

Dr C W Yong Scientific Computing Department, STFC, Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD

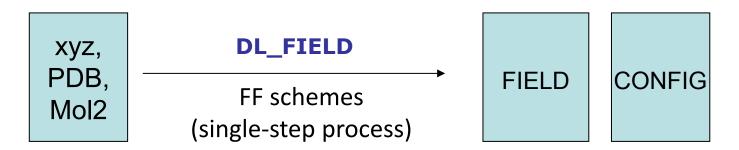
(DL Software training workshop, Chile, May 2019)

Overview

- What is DL_FIELD and why?
- DL_FIELD features, what it can do.
- DL_F notation, DANAI.
- Demo

DL_FIELD program

- One of the DL_Software program component a collective term for computational chemistry software developed at Daresbury Laboratory (http://www.ccp5.ac.uk/software)
- First DL_FIELD version Oct 2010. Since then, registered user > 1400
- Current version 4.4, going to release 4.5, June 2019.
- A computer program package written in C that primarily serves as a support application software tool for DL_POLY molecular dynamics (MD) simulation package.
- Important application tool to enhance the usability of DL_POLY MD simulation package and to facilitate the use of a wide range of advance features included in the DL_POLY program.

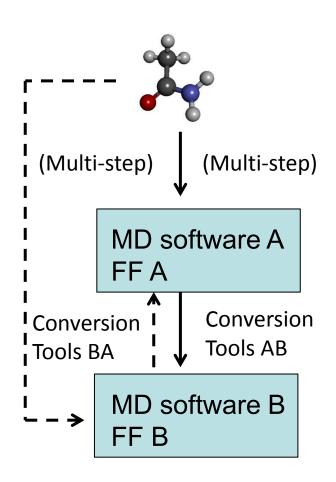


DL_FIELD Functions

- (1) Force field model convertor: DL_FIELD converts user's atom models, into file formats (CONFIG, FIELD) that are recognisable and ready to run in DL_POLY_2.19, DL_POLY_3 and DL_POLY_4 programs with minimum user's intervention.
- (2) Force field editor: DL_FIELD allows user to edit or modify a particular force field (FF) scheme to produce a customised scheme that is specific to a particular simulation model. (Inclusion of new features to a FF scheme will always make available to all, whenever possible)
- (3) Force field model repertoire: Easily expand the existing library to include user-defined models.
- (4) Full automatic atom typing and identification of chemical nature of atoms.

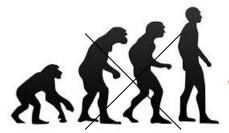
DL_FIELD Development

Philosophy: minimise the requirement to understand detailed knowledge and inner workings of force field descriptions. A user-friendly software tool that automatically processes the molecular information with minimum user's intervention.

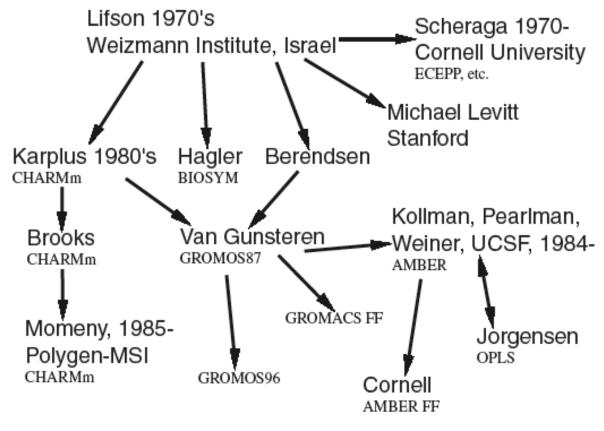

Able to access to different types of potential schemes all in single, easy to read format (allatom, united-atom, inorganic)

Robust, be able work on typical PC. Flexible, general: from a single molecular system to complex fully-solvated biological systems containing several million atoms.

Unique features: (1) Universal atom typing (DL_F Notation), (2) full integration of various force field schemes, from such, (3) multiple-potential capabilities.


Conversion Software tools

Molecular simulation engine infrastructure



Evolution of FF

A set of interactions constitutes a force field (FF)

FF model set is not trivial

- Atom typing: no general consensus, universal format, naming, guidance
- Different FF schemes have their own way of setting things up
- Different functional forms
- Wide variation of file formats, often not easy to interpret.
- Migration of FF models?
- How to setup multi-component systems? Bio-inorganic.
- User friendliness? Ad-hoc scripts?

Reluctance of using different FFs. Restriction to new model setup and development.

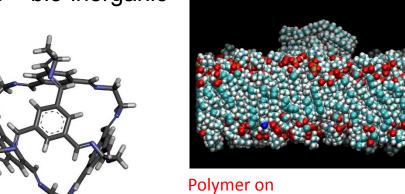
DL_FIELD is developed to overcome these barriers

Available Force Field schemes

- CHARMM CHARMM22_prot, CHARMM36_prot, CHARMM36_lipid, CHARMM36_CGenFF, CHARMM36_carb.
- AMBER proteins, Glycam sugars, glycans.
- OPLS2005 proteins, organic molecules
- OPLS-AA/M proteins
- PCFF Small organic molecules, organic polymers.
- CVFF Small organic molecules, proteins.
- DREIDNG General force fields for organic and other covalent molecules.
- INORGANIC –binary_oxides, glass, clay
- CHARMM19 united atom with explicit polar H.
- G54A7 united atom Gromos FF.

Future inclusion: FF for ionic liquids, general-purpose FF, coarse-grain FF

All FFs expressed in the same format.



Model Conversions

- Organic molecules, from simple to complex: covalent molecules, amino acids, proteins, glycans, polymers.
- Complex 3D networked structures: graphenes, molecular cages.

Organic cage

- Random structures gels, polymers.
- Inorganic materials simple ionic oxides, minerals
- Mixed component materials bio-inorganic

Carbohydrate on graphene

lipid membrane

Protein

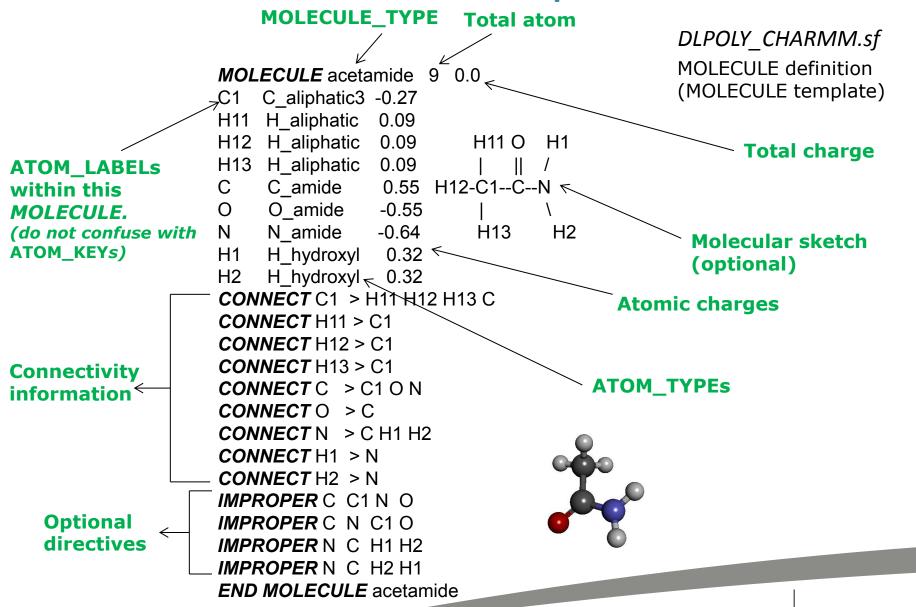
DL_FIELD Main Features

- Convert a PDB, xyz, mol2 structures to CONFIG and FIELD files for DL_POLY.
- Assign freeze and tether atoms, bond constrains.
- Define rigid bodies, and freeze, tether, constrain atoms.
- Pseudo point assignment.
- Core-shell polarisability model assignment.
- User-defined force field file (udff)
- Equivalence atom assignment
- Solvation with insertion of counter ions
- Bond, angles and dihedrals selections and exclusions
- Fully automatic atom typing using a universal notation (xyz)
- **Multiple potentials** (bio-inorganic)
- Solution Maker set up disordered system.
- Running DL_POLY (fork)

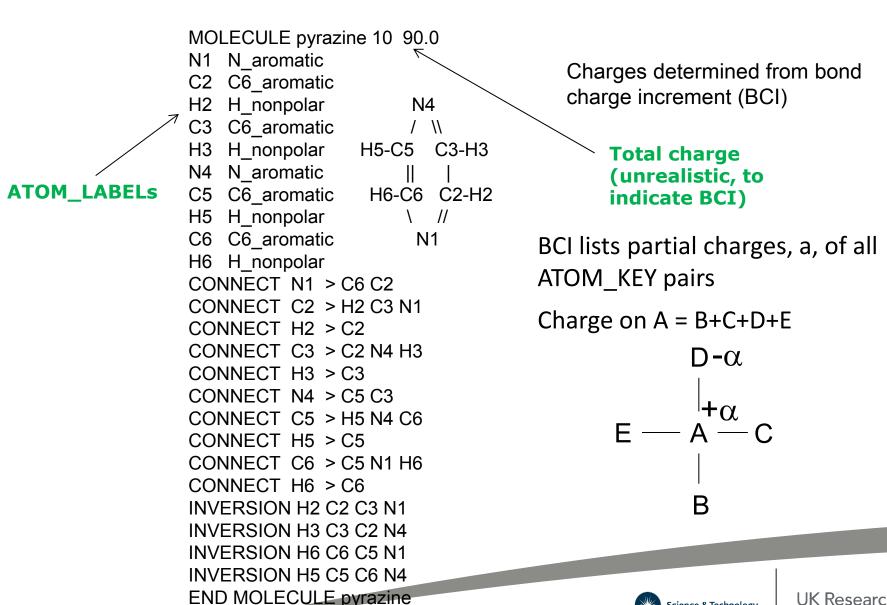
DL_FIELD Files

- Each force field scheme consists of
- (1) Structure files (.sf) define MOLECULE templates, ATOM_TYPEs
- (2) Parameter files (.par) potential parameters
- (3) Misc. supporting file (BCI)
- The udff file user-define force field
- The control file.
- DLF_Notation Chemical Group list and specific conversion rules
- dl_field.atom_type

DL_FIELD Conversion Procedures

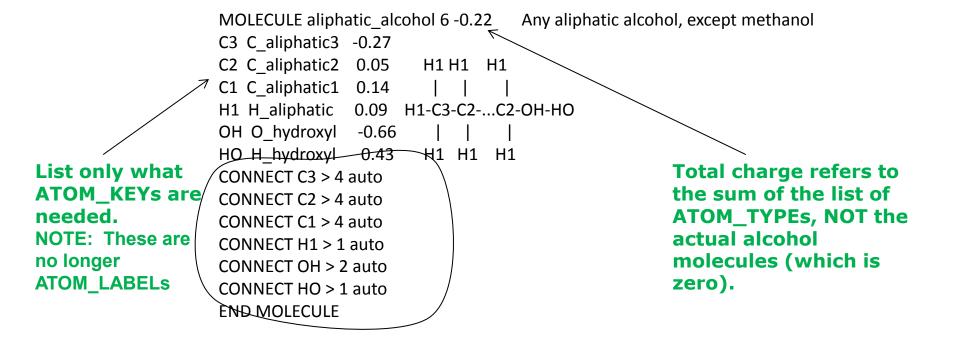

Just a summary!

- 1) Read control file.
- 2) Examine user configuration files.
- 3) Carry out **atom typing** procedures to obtain ATOM_TYPEs (**Conversion mechanism**).
 - (i) Looking for matching templates, in sf files (for PDB).
 - (ii) Molecular topology analysis (for xyz, mol2).
- 4) Assign parameters, obtained from *par* file.
- 5) Produce dl_poly.CONFIG, dl_poly.FIELD and dl_poly.CONTROL files


(i) Conversion Mechanism – Template Based

- Useful for specific class of molecules proteins, carbohydrates.
- Largely based on molecular template fit in terms of bond connectivity.
- A molecular template must be explicitly defined, indicating the charges and types of atoms that made up the molecule.
- Possible to use auto-CONNECT feature to simplify the template definition. Useful for complex molecules.
- Flexible, allows users to adjust the model behaviour introduce constrains, rigid body, core-shell, pseudo points etc.
- User's structures in PDB format.
- Cons: tedious. Need to decide atom types.

MOLECULE Template



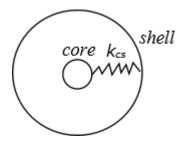
DLPOLY_PCFF.sf

Use of auto-CONNECT feature to define MOLECULE for a class of molecules

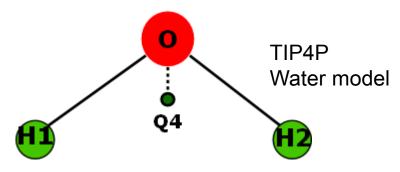
For example: ethanol, propanol, butanol etc 'all-in-one'

DLPOLY_INORGANIC_ternary_oxides.sf

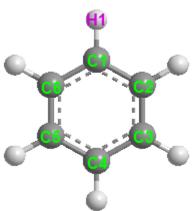
```
MOLECULE calcium carbonate1 5 0.0
                                        Xiao et. al., J. Phys. Chem. vol. 115, pg 20067-20075 (2011)
                                       A New transferable Forcefield for
Ca 1 Calcium ion 1 1.668
                                OAR1
CAR1 C carbonate1 0.999
                                        Simulating the Mechanics of CaCO3 Crystals
OAR1 O carbonate1 -0.889
                            Ca CAR1
OAR1 O carbonate1 -0.889
OAR1 O carbonate1 -0.889
                               OAR1 OAR1
CONNECT Ca 1 > 0 AUTO
CONNECT CAR1 > 3 AUTO
CONNECT OAR1 > 1 AUTO
CONNECT OAR1 > 1 AUTO
CONNECT OAR1 > 1 AUTO
ANGLE ONLY OAR1 CAR1 OAR1
IMPROPER CAR1 OAR1 OAR1
END MOLECULE
```



Optional Directives for MOLECULE Templates

- IMPROPER ATOM_LABEL1 ATOM_LABEL2 ATOM_LABEL3 ATOM_LABEL4
- INVERSION ATOM_LABEL1 ATOM_LABEL2 ATOM_LABEL3 ATOM_LABEL4
- **SHELL** ATOM_LABEL1 ATOM_LABEL2
- **DIHEDRAL ONLY** ATOM LABEL1 ATOM LABEL2 ATOM LABEL3 ATOM LABEL4
- **DIHEDRAL REMOVE** ATOM_LABEL1 ATOM_LABEL2 ATOM_LABEL3 ATOM_LABEL4
- DIHEDRAL OFF
- **ANGLE ONLY** ATOM LABEL1 ATOM LABEL2 ATOM LABEL3
- ANGLE REMOVE ATOM LABEL1 ATOM LABEL2 ATOM LABEL3
- ANGLE OFF
- **BOND ONLY** ATOM LABEL1 ATOM LABEL2
- **BOND REMOVE** ATOM LABEL1 ATOM LABEL2
- BOND OFF
- RIGID ATOM_LABEL1 ATOM_LABEL2 ...
- THREE-BODY ATOM_LABEL1 ATOM_LABEL2 ATOM_LABEL3
- EXCLUSION 14 ATOM LABEL1 ...


Template Customisation

Core-shell model


The core-shell model is usually employed in inorganic materials to simulate polarisability effect of an atom such as oxygen.

Pseudo points

An off-center point charge water model.

Rigid body

Note that all the hydrogen atoms are still flexible relative to the rigid ring. The following [**RIGID**] directive defines one of the the hydrogen atom to be part of the rigid body:

RIGID C1 H1 C3 C2 C6 C4 C5

DL_FIELD Limitation:

Each [RIGID] statement in DL_FIELD refers to a single rigid unit within a MOLECULE that can only contain up to 15 atoms. This is different from DL_POLY, which allows more than that but confine to 15 atoms in a line statement in the FIELD file.

(ii) Conversion Mechanism – Molecular Topology Analysis

- Determine chemical nature of every atom in system. Make use of DL_F Notation for atom typing (more about this later)
- Do not need to create MOLECULE template
- Do not need to decide ATOM_TYPEs.
- Everything is done automatically.
- Reads xyz, mol2 files.

Parameter File (.par)

- Consists of all types of interactions with the exception of coulombic charges (defined for every ATOM in the .sf file).
- Each type of interaction is enclosed within the appropriate DIRECTIVES.
- Examples: Bond definitions. $U(b) = k(b b_0)^2$

BOND	k	b_0	remark
C3 H3	330.0 240.0	1.0800 1.4550	PEP Alanine Dipeptide ab initio calc's (LK) ALLOW POL, methylamine geom/freq, adm jr.,
6/2/92 C3 N2		1.4300	
\$pectra	0-010	K	ALI PEP POL ARO, NMA Gas & Liq. Phase IR
/ C3 N3 (KK)	200.0	•	ALI POL new stretch and bend; methylammonium ial parameters
 END BOND			— (C3)— (H3)

Other *DIRECTIVES* in .par file:

ANGLE END ANGLE

DIHEDRAL END DIHEDRAL

INVERSION END INVERSION

IMPROPER END IMPROPER

SHELL END SHELL

VDW END VDW

VDW_FIX END VDW_FIX

THREE_BODY END THREE_BODY

EQUIVALENCE END EQUIVALENCE

Note: Can only have one set of *DIRECTIVE*s in a .par file.

User-define force field (udff) File

- Define new molecular structures without tampering with the library .sf and .par files.
- Define new force field parameters, ATOM_TYPEs, etc specific to user's model.
- Redefine data by overriding existing force field information from the standard library (without doing any physical change to the data in the library file).
- Filename: any_name.udff

For example: override the angle parameter

In DLPOLY_CHARMM.sf

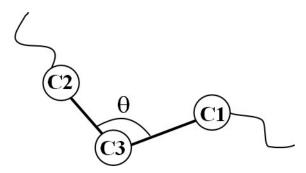
ANGLE

...

C1 C3 C2 58.35 113.50 11.16 2.561 alkane freq (MJF), alkane geom (SF)

...

END ANGLE


In *udff*

ANGLE

C2 C3 C1 **68.35** 113.50 **12.16** 2.561 my new parameter

END ANGLE

For example: override the MOLECULE methenol

In DLPOLY_CHARMM.sf

MOLECULE_TYPE

. . .

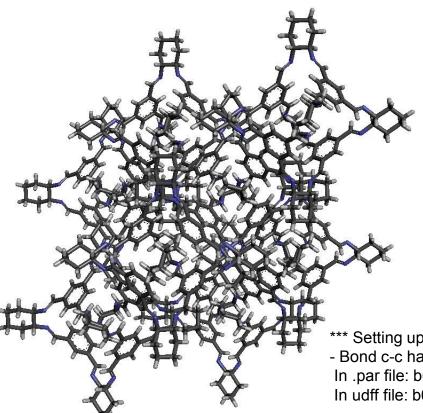
methanol MeOH 32.042 override MeOH

. . .

END MOLECULE_TYPE

```
MOLECULE methanol 6 0.0
                        charmm22 protein
C1 C aliphatic3 -0.04
                         H11
H11 H aliphatic 0.09
H12 H aliphatic
               0.09
                    H12-C1-O-H
H13 H aliphatic 0.09
  O hydroxyl -0.66
                         H13
   H hydroxyl 0.43
CONNECT C1 > H11 H12 H13 O
CONNECT H11 > C1
CONNECT H12 > C1
CONNECT H13 > C1
CONNECT 0 > C1 H
CONNECTH > 0
END MOLECULE
```

In *udff* file


END MOLECULE

```
MOLECULE methanol 6 0.0
                         modified MeOH
C1 C aliphatic3 -0.04
                         H11
H11 H aliphatic
              0.09
H12 H aliphatic 0.09
                     H12-C1-O-H
H13 H aliphatic
              0.09
              -0.60
   O hydroxyl
                         H13
               0.37
   H_hydroxyl
CONNECT C1 > H11 H12 H13 O
CONNECT H11 > C1
CONNECT H12 > C1
CONNECT H13 > C1
                         Change partial charges
CONNECT O > C1 H
                         For O and H
CONNECTH > 0
```


Organic cage (8 units)

PDB structure produced from Materials Studio.

Force field conversion in DL_FIELD using PCFF force field with user-defined parameters

- *** Setting up potential set from standard lib/DLPOLY_PCFF.par file...
- Bond c-c has been overrided by dl_field.udff.
 In .par file: b0=1.530000 K2=299.670000 K3=-501.770000 K4=679.810000
 In udff file: b0=1.536000 K2=252.200000 K3=-513.200000 K4=407.900000
- Bond c-h has been overrided by dl_field.udff.
 In .par file: b0=1.101000 K2=345.000000 K3=-691.890000 K4=844.600000
 In udff file: b0=1.121000 K2=346.800000 K3=-691.890000 K4=544.600000

DL_FIELD Control File

This is the title line. Put what you want. Reads only 120 columns multiple * Type of force field require. kcal/mol * Energy unit: kcal/mol, kJ/mol, eV, K or default * Conversion criteria (strict, normal, loose) normal **Brief statement,** * Bond type (0=default, 1=harmonic, 2=Morse) describing all 2 * Angle type (0=default, 1=harmonic, 2=harmonic cos) available options * Include user-defined information. Put 'none' or a .udff filename none * Verbosity mode: 1 = on, 0 = off example.pdb * Filename for the user's atomic configuration. None * Output file in PDB. Put 'none' if not needed. A complete list of 0 * Optimise FIELD output size, if possible? 1=yes 2=no control features 2 * Atom display: 1 = DL FIELD format. 2 = Standard format * Vdw display format: 1 = 12-6 format 2 = LJ format * Epsilon mixing rule (organic FF only): 1 = geometric 2 = arithmatic or default Default Default * Sigma mixing rule (organic FF only): 1 = geometric 2 = arithmatic or default * Epsilon mixing rule (inorganic FF only) : 1 = geometric 2 = arithmatic * Sigma mixing rule (inorganic FF only) : 1 = geometric 2 = arithmatic * Epsilon mixing rule (between different FF) : 1 = geometric 2 = arithmatic or default * Sigma mixing rule (between different FF): 1 = geometric 2 = arithmatic or default * Display additional info. for protein 1=Yes 0=No * Freeze atoms? 1 = Yes (see below) 0 = No 0 * Tether atoms? 1 = Yes (see below) 0 = No * Constrain bonds? 1 = Yes (see below) 0 = No 0 * Apply rigid body? 1 = Yes (see below) 0 = No 0 * Periodic condition ? 0=no, other number = type of box (see below) auto 50.00 0.0 0.0 * Cell vector a (x, y, z) 0.00 50.0 0.0 * Cell vector b (x, y, z)

Options

0.00 0.0 50.0 * Cell vector c (x, y, z)

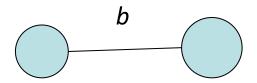
default

* 1-4 scaling for coulombic (put default or x for scaling=x)

Atom State Selection (in DL_FIELD control file)

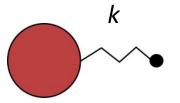
Atom state specification: type Molecular_Group filter [value]

```
FREEZE ORG1 cp
FREEZE ORG2 CT
ATOM_KEY


RIGID A Spring constant

TETHER CLY st 100.0
```

CONSTRAIN ORG1 h-bond
CONSTRAIN ORG2 h-bond
CONSTRAIN not_define h-bond
CONSTRAIN MOL h-bond



Bond constrains, freeze, tether atoms

Filters for CONSTRAIN

h-bond all rigid_water

Filters for FREEZE and TETHER directives

all_backbone c-alpha atom_type all

Usage:

DIRECTIVE Molecular_Group filters **CONSTRAIN** A1 h-bond

DL_POLY Control Section (in DL_FIELD control file)

The *dl_f_path* File

Can have multiple versions of control file. You name it.

```
# Directory paths for DL_FIELD version 4.4 onwards.
# C W Yong, October 2018
# This file must be located where DL FIELD executable is located.
# The directory must be changed correspondly if you move the file components.
# All directory paths are RELATIVE to DL FIELD home directory.
# Do not use absolute paths.
# paths
library = lib/
solvent = solvent/
output = output/
# DL FIELD control files
control = dl field.control
# control = control_files/example1.control
# control = tutorial/tutorial 1.control
```


First Run

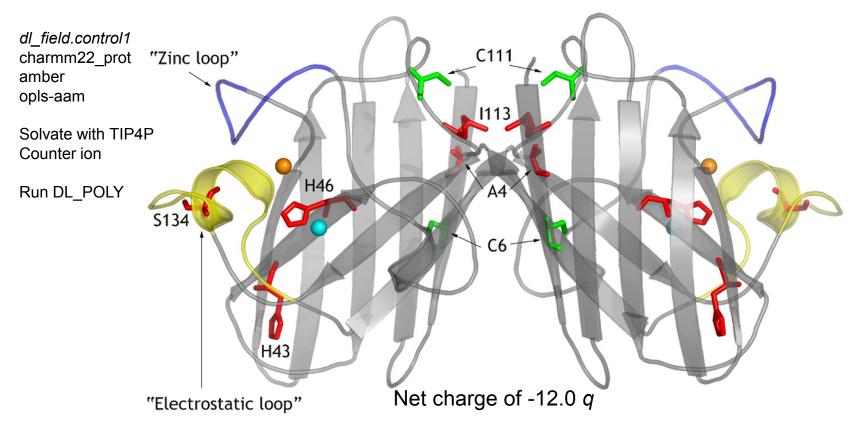
Start from a protein PDB file, run DL_FIELD.

- (a) Edit *dl_f_path* file to point to a *control* file.
- (b) Edit control file.

Choose a FF.

Setup FF model.

Solvate TIP4P


Automatic insertion of counter ions.

(c) Run DL_POLY
Rename and move dl_poly.CONFIG and dl_poly.FIELD
to become CONFIG and FIELD file.
Run DL_POLY (MM energy)

All in one go.

Example: Apo-SOD1 (dimer protein, 153 residues per dimer)

Wild type like mutants

Mutations at the metal binding region results in deficient in metals (*apo*) cause structural disorder of channel loops.

SOD1 dimer showing some ALS mutation sites

R. Strange et. al. PNAS 104, 10040 (2007)

Unique Features

DL_FIELD

DL_F Notation

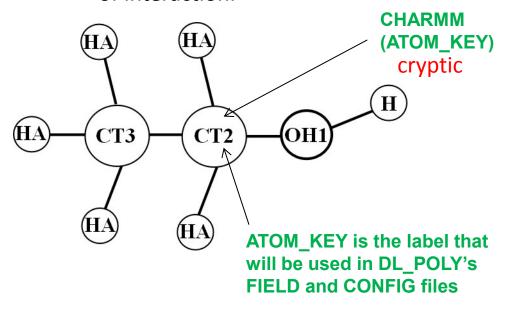
Full automatic determination of the chemical nature of every atom in molecular systems.

Multiple potentials

Capable to setup complex mixed component systems such as bio-inorganic Systems. Enable setting up of novel simulation models.

DL_ANALYSER

DANAI


Detect, annotate and quantify specific atomic interactions in the systems.

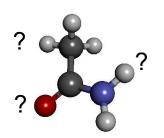
DL_F Notation

A universal atom typing implemented within the DL_FIELD conversion engine.

Atom typing

Procedure to decide the type of atom (ATOM_TYPE) that are referenced to a specific atom label (ATOM_KEY); and from such, to assign the appropriate force field parameters for the atom that involves in a given set of interaction.

Different ATOM_KEYS within a MOLECULE .


Standard force fields

ATOM_TYPE -> ATOM_KEY
Can be cryptic always cryptic

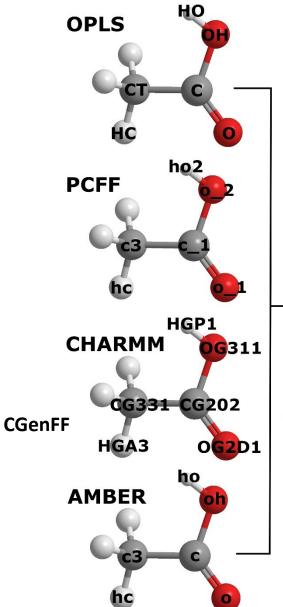
DL_FIELD without DL_F Notation
ATOM_TYPE -> ATOM_KEY
Human-readable always cryptic

DL_FIELD with DL_F Notation ATOM_TYPE -> ATOM_KEY Human-readable human-readable

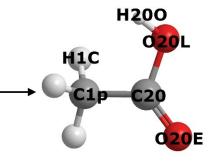
Atom typing assignment

Some existing implementations

Templates, Logic syntax, symbolic syntax, file scripts


Have a guess, what are these atoms (CT and C791)?

```
Typing procedure
            (MacroModel)
                                                       (cryptic)
            SMILE-like:
            CT = [CX4](CO)(F)(F)(F) (symbolic syntax)
            (Vanderbilt U – Concept paper, 2016)
            C791 : type = C \&
                   count(bonded_atoms(type = F)) = 3 &
                                                            (logic syntax)
                   count(bonded atoms(type = C)) = 1
                  Answer: -CF<sub>3</sub>
                                   Trifluoro carbon
ATOM KEYs
                     CT – OPLS (in MacroModel)
cryptic
                     C791 – OPLS (in Tinker)
```



Atom typing in DL_F Notation

- Expression of the standard atom typing that is contiguous across a range of force field.
- Universal typing that smoothen data transition with minimum learning curve when migrating from one force field scheme to another.
- Allows one single conversion scheme.
- Easy to identify, with sensible format of naming atoms that indicates precisely the chemical nature of every atom in the system.
- Allows full automatic determination of ATOM_TYPEs without the need of any pre-defined MOLECULE template.
- Reads configuration files in simple xyz and mol2 formats.

Ethanoic acid in DL_F Notation

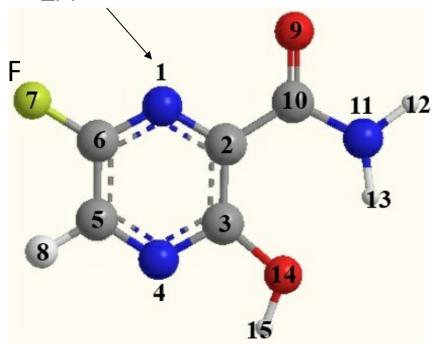
DL_F Notation

The numerical values (*CGI*) uniquely identify the *Chemical Groups* (*CG*).

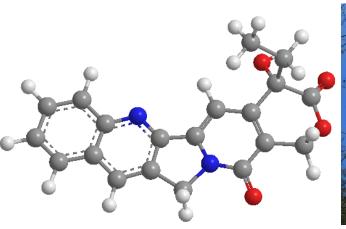
CGI 1 = alkane

CGI **20** = carboxylic

ATOM_TYPE (ATOM_KEY)
Cp_alkane (C1p)
HC_alkane(H1C)
C_carboxylic (C20)
OE_carboxylic (O20E)
OL_carboxylic (O20L)
HO carboxylic (H20O)


DLF_Notation File in *lib/* **Directory**

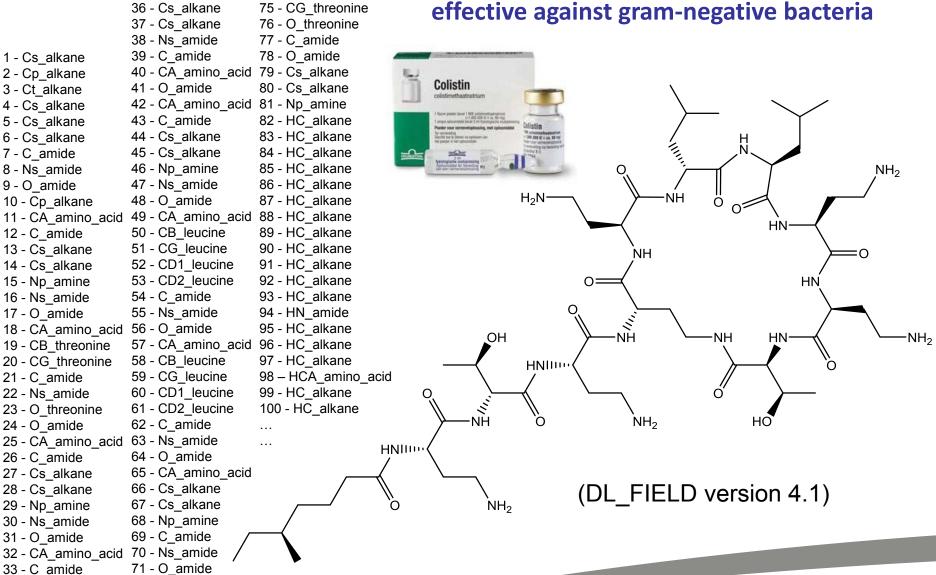
	# carbon		# nitro	ogen	# sulphur		
	1	alkane	40	carbamate	100	thiol	
	2	alkene	41	carbamic_acid	101	sulphide	
	3	alkyne	42	urea	102	disulphide	
	4	cyclopropyl	43	carbamoyl_chloride	103	thione	
	5	cyclobutyl	44	amide	104	thial	
	6	benzene	45	amine	105	sulphoxide	
	7	benzyl	46	aniline	106	sulphone	
	8	phenol	47	ammonium	107	sulphate	
	9	biphenyl	48	ketimine	108	thiocyanate	
	10	allene	49	aldimine	109	isothiocyanate	
	11	aromatic	50	hydrazone	110	sulphinic_acid	
	12	cyclopropene	51	amidine	111	sulphonic_acid	
	13	aliphatic	52	aldoxime	112	thionoester	
	# oxy	gen en	53	ketoxime	113	sulphonamide	
	15	alcohol	54	imide	114	thioacyl_chloride	
	16	ketone	55	cyanate	115	sulfinamide	
_▼	17	aldehyde	56	isocyanate	116	sulphamide	
CGI	18	acylhalide	57	nitrate	117	sulphite_ester	
_	19	ester	58	nitrile	118	thioamide	
	20	carboxylic	59	isonitrile			
_	21	carboxylate	60	nitrite			
CG							


Favipiravir – antiviral drug

		PCFF	DL_F
2 - C2_p	yrazine	ср	C502-2
3 - C3_p	yrazine	ср	C502-3
4 - N4_p	yrazine	np	N502-4
5 - C5_p	yrazine	ср	C502-5
6 - C6_p	yrazine	ср	C502-6
1 - N1_p	yrazine	np	N502-1
8 - HC_a	romatic	hc	H11C
7 - FC_a	romatic	f	F11C
14 - O_ph	nenol	oh	08
15 - HO_p	ohenol	ho	H80
10 - C_an	nide	c_1	C43
9 - O_ar	nide	o_1	O43
11 - N <i>p</i> _a	ımide	n_2	N43p
12 - HN_a	amide	hn2	H43N
13 - HN_a	amide	hn2	H43N

Camptothecin – a quinoline alkaloid

PCFF


Camptotheca acuminata

Generated by DL FIELD v3.50 Units kcal/mol Molecular types 1 Molecule name not define nummols 1 atoms 42 12.01150 -0.12680 1 0 ср 12.01150 -0.12680 1 0 ср 12.01150 -0.12680 1 0 ср 0.24050 1 0 12.01150 ср 12.01150 0.00000 1 0 ср 12.01150 -0.12680 1 0 ср np 14.00670 -0.48100 1 0

1 - C6 quinoline 2 - C7 quinoline 3 - C8 quinoline 4 - C8a quinoline 5 - C4a quinoline 6 - C5 quinoline 7 - N1 quinoline 8 - C2 quinoline 9 - C3 quinoline 10 - C4 quinoline 11 - CE alkene 12 - Nt amide 13 - Cs alkane 14 - CL alkene 15 - CL alkene 16 - CE alkene 17 - C amide 18 - Cq alkane 19 - C ester 20 - OL ester 21 - Cs alkane 22 - O amide

23 - OE_ester 24 - O alcohol 25 - Cs alkane 26 - Cp alkane 27 - HC aromatic 28 - HC aromatic 29 - HC aromatic 30 - HC aromatic 31 - HC aromatic 32 - HC alkane 33 - HC alkane 34 - HC alkene 35 - HC alkane 36 - HC alkane 37 - HO alcohol 38 - HC alkane 39 - HC alkane 40 - HC alkane 41 - HC alkane 42 - HC alkane

Colistin (polypeptide antibiotic) effective against gram-negative bacteria

72 - CA amino acid

74 - CB threonine

73 - Ns amide

34 - Ns amide

35 - O_amide

45
Science & Technology
Facilities Council

Demo: Dynemicin A

An antitumor antibiotic derived from microbial fermentation

Multiple Potential in DL_FIELD

Implementation of more than one type of FF schemes in a model: be it two or more organic FF schemes or inorganic FF schemes, or even the mixtures of the organic/inorganic FF schemes.

Auto-mixing different FF schemes possible.

Otherwise, leave blank. (Can use VDW_FIX directive)

Example PDB file contains	REMARK	POTE	NTIAL A	MBE	ER	
A number of methanol	HETATM	1 C	MEOH	1	0.185 0.739 -0.000	GRP1 C
	HETATM	2 H	MEOH	1	-0.770 1.307 0.000	GRP1 H
molecules /	HETATM	3 H	MEOH	1	0.721 0.934 -0.953	GRP1 H
	HETATM	4 H	MEOH	1	0.721 0.934 0.953	GRP1 H
	HETATM	5 O	MEOH	1	-0.158 -0.634 -0.000	GRP1 O
	HETATM	6 H	MEOH	1	0.666 -1.128 -0.000	GRP1 H
	REMARK	_	_	PLS		
/ /	HETATM	8 H	MEOH	1	-0.770 6.307 0.000	GRP2 H
	HETATM	10 H	MEOH	1	0.721 5.934 0.953	GRP2 H
/ /	HETATM	7 C	MEOH	1	0.185 5.739 -0.000	GRP2 C
	HETATM	11 0	MEOH	1	-0.158 4.366 -0.000	GRP2 O
	•••					
	 HETATM	7 C	MEOH	2	0.185 9.739 -0.000	GRP2 C
/ /	HETATM	11 0	MEOH	2	-0.158 8.366 -0.000	GRP2 O
//	HETATM	12 H		2	0.666 7.872 -0.000	GRP2 H
/ /	HETATM	9 H	MEOH	2	0.721 9.934 -0.953	GRP2 H
	HETATM	1 C	MEOH	3	0.185 -3.261 -0.000	GRP3 C
	HETATM	2 H	MEOH	3	-0.770 -2.693 0.000	GRP3 H
	HETATM	3 H	MEOH	3	0.721 -3.066 -0.953	GRP3 H
	HETATM	4 H	MEOH	3	0.721 -3.066 0.953	GRP3 H
	HETATM	5 O	MEOH	3	-0.158 -4.634 -0.000	GRP3 O
	HETATM	6 H	MEOH	3	0.666 -5.128 -0.000	GRP3 H
_	REMARK	POTE		HAF	RMM22_prot	
	HETATM	8 H	_	1	3.230 6.307 0.000	GRP4 H
	HETATM		MEOH	1	4.721 5.934 0.953	GRP4 H
	HETATM	7 C	MEOH	1	4.185 5.739 -0.000	GRP4 C
This is just an example.		11 0	MEOH	1	3.842 4.366 -0.000	GRP4 O
	HETATM	12 H	MEOH	1	4.666 3.872 -0.000	GRP4 H
	HETATM	9 H	MEOH	1	4.721 5.934 -0.953	GRP4 _I H
	END					Science & Technology
						Science & Technology Facilities Council

Bio-inorganic model in PDB format

*	ATOM	POTENTIAL ch 1 C2 ETOH 2 H21 ETOH	narm 1 1	0.995 0.329	5.000 5.000	GRP1 GRP1
	ATOM	3 H22 ETOH	1	1.096 0.975	4.098	GRP1
	ATOM	4 H23 ETOH	1	1.096 0.976	5.901	GRP1
Define FFs – indicate	ATOM	5 C1 ETOH	1	-0.340 -0.404	5.000	GRP1
the extent of each FF.	ATOM	6 H11 ETOH	1	-0.456 -1.038	5.907	GRP1
	ATOM	7 H12 ETOH	1	-0.457 -1.039	4.093	GRP1
	ATOM	8 HO1 ETOH	1	-2.235 0.073	5.000	GRP1
	ATOM	9 O1 ETOH	1	-1.394 0.538	5.000	GRP1
	*REMARK	POTENTIAL in	orga	nic_binary_oxide		
	HETATM	4 O10 MO3	1		0.000	GRP2
	HETATM	1 Mg3 MO3	1	0.000 0.000	0.000	GRP2
	HETATM	2 O10 MO3	1	0.000 2.104	0.000	GRP2
	HETATM	3 Mg3 MO3	1	0.000 4.208	0.000	GRP2
	HETATM	5 O10 MO3	1	2.104 0.000	0.0	GRP2
	HETATM	6 Mg3 MO3	1	2.104 2.104	0.0	GRP2
	HETATM	7 O10 MO3	1	2.104 4.208	0.0	GRP2
	HETATM	8 Mg3 MO3	1	2.104 6.312	0.0	GRP2
	HETATM	9 Mg3 MO3	1	4.208 0.0	0.0	GRP2
	HETATM	10 O10 MO3	1	4.208 2.104	0.0	GRP2
	HETATM	11 Mg3 MO3	1	4.208 4.208	0.0	GRP2
PDB format	HETATM	12 O10 MO3	1	4.208 6.312	0.0	GRP2
1 DD Ioiiilat	HETATM	1 Mg3 MO3	2	10.000 0.000	0.00	GRP2

. . .

Example xyz file contains an organic molecule on clay surface.

Element symbols

Can be element symbols or ATOM_KEYs

451 CRYST1 83.908 20.7302253 17.9859383759 90.00 90.00 90.00 (P 1) # POTENTIAL CVFF MOLECULAR GROUP ORG1 C 10.000000 1.390000 0.000000 10.000000 0.695000 1.204000 10.000000 -0.695000 1.204000 10.000000 -1.391000 0.000000 10.000000 -0.695000 -1.204000 10.000000 0.695000 -1.204000 10.000000 2.450000 0.000000 H 10.000000 1.225000 2.123000 H 10.000000 -1.226000 2.122000 H 10.000000 -2.451000 0.000000 H 10.010000 -1.226000 -2.122000 H 10.000000 1.225000 -2.122000 # POTENTIAL inorganic clay MOLECULAR GROUP CLY MOLECULE KEY **CLYF** st -2.675000 -6.024000 4.703000 st -2.700000 -6.039000 -4.313000 st -2.776000 -3.444000 -8.761000 →st -2.686000 -0.853000 4.722000 st -2.697000 -0.830000 -4.318000 Must define this for st -2.786000 -8.616000 -8.741000 st -2.690000 -3.463000 6.268000 inorganic FF. st -2.730000 -8.634000 6.283000 st -2.722000 -8.677000 0.254000 st -2.653000 -3.446000 -2.766000

st -2.709000 -8.694000 -2.754000 st -2.687000 -3.445000 0.268000

Van-der-Waal mixing schemes

(between two atoms from two different force fields)

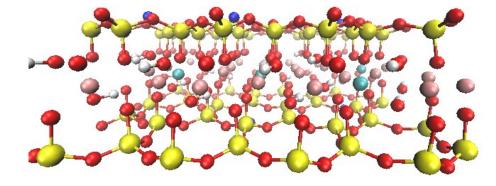
Mixing rule no	Scheme name	Energy, ϵ_{ij}	Steric, σ _{ij}
1	Standard geometric	$\sqrt{arepsilon_{ii}arepsilon_{jj}}$	$\sqrt{\sigma_{ii}\sigma_{jj}}$
2	Standard arithmatic	$\frac{\sqrt{\varepsilon_{ii}\varepsilon_{jj}}}{\varepsilon_{ii}+\varepsilon_{jj}}$	$\frac{\sqrt{\sigma_{ii}\sigma_{jj}}}{\frac{\sigma_{ii}+\sigma_{jj}}{2}}$
3	Fender-Halsey	$\frac{2\epsilon_{ii}\epsilon_{jj}}{\epsilon_{ii}+\epsilon_{jj}}$	$\frac{\sigma_{ii} + \sigma_{jj}}{2}$
4	Halgren HHG	$4\frac{\varepsilon_{ii}\varepsilon_{jj}}{(\sqrt{\varepsilon_{ii}}+\sqrt{\varepsilon_{jj}})^2}$	$\frac{\sigma_{ii}^3 + \sigma_{jj}^3}{\sigma_{ii}^2 + \sigma_{jj}^2}$
5	Waldman-Hagler	$2\sqrt{\varepsilon_{ii}\varepsilon_{jj}}\frac{\left(\sigma_{ii}\sigma_{jj}\right)^{3}}{\sigma_{ii}^{6}+\sigma_{jj}^{6}}$	$\left(\frac{\sigma_{ii}^6 + \sigma_{jj}^6}{2}\right)^{\frac{1}{6}}$

Lorentz-Berthelot – specify 1 for energy, 2 for steric Hogervorst (good hope) – specify 1 for energy, 1 for steric

1.pdb/1pdb.control

Change to opls2005 Change mixing rules

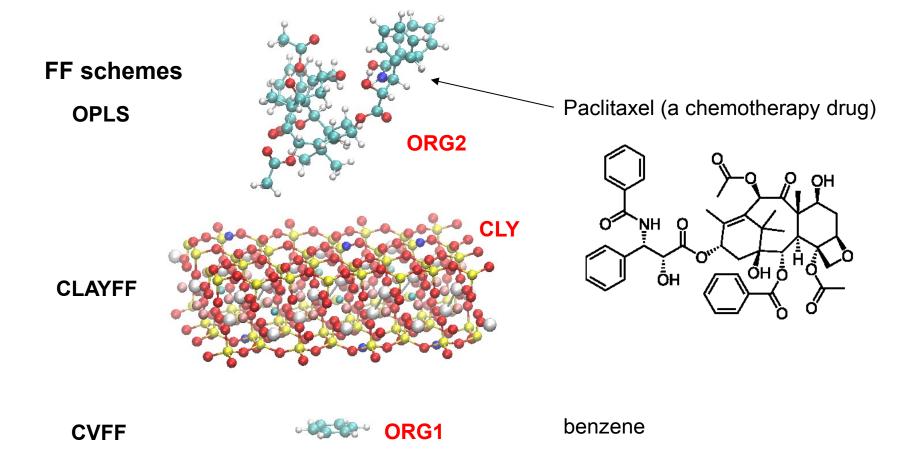
Demo: multiple potential, organic-inorganic model


FF schemes

CHARMM22

benzene

CLAYFF



Montemorillonite (phyllosilicate clay mineral) Two tetrahedral Si sandwiched a central octahedral sheet of alumina.

2.xyz/2xyz.control
(see 2.xyz)
(see dlf_notation.output)

Demo 3: multiple potential, organic-inorganic model

FREEZE ORG1 cp FREEZE ORG2 CT TETHER CLY st CONSTRAIN H-bond on ORG1, ORG2

Using DL_FIELD

Registration:

http://www.ccp5.ac.uk/DL_FIELD

Uncompress program:

gunzip dl_field_4.5.tar.gz

Compile program:

cd source make clean make

Run program:

./dl_field

DL_FIELD Directories

```
/source — source codes, where you do the compilation
/lib — Standard library file (.sf, .par)
/output — dl_poly.CONFIG, dl_poly.FIELD, dlf_notation.output
/Examples — Some PDB and xyz structures
/solvent —solvent templates
/tutorial — tutorial directory
/utility — Contain some useful scripts.
/control_files — control files that run the example structures
```


DL_FIELD Tutorial

dl_f_path file

```
# Directory paths for DL FIELD version 4.4 onwards.
# C W Yong, October 2018
# This file must be located where DL FIELD executable is located.
# The directory must be changed correspondly if you move the file components.
# All directory paths are RELATIVE to DL_FIELD home directory.
# Do not use absolute paths.
# paths
library = lib/
solvent = solvent/
output = output/
# DL FIELD control files
                                                                           run examples
control = dl field.control
# control = control_files/example1.control
# control = tutorial/tutorial 1.control
                                                                    run tutorial
Tutorial: see tutorial/dl_f_tutorial.pdf
Example structures: See dl_f_manual.pdf, Chapter 13
```


DL_FIELD registrations

The program is supplied to individuals under an academic licence, which is free to academics pursuing scientific research of a non-commercial nature. Daresbury Laboratory is the sole centre for distribution of the package.

For more information, please visit the web site:

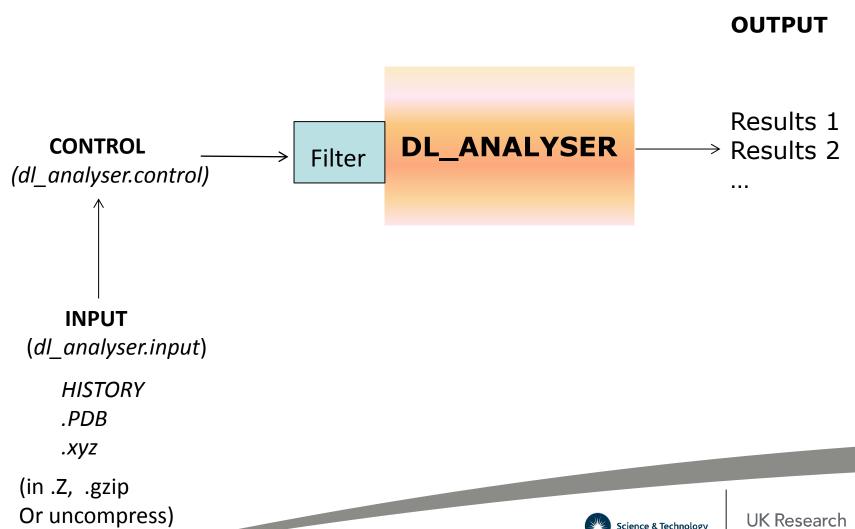
http://www.ccp5.ac.uk/DL_FIELD

Comments, suggestions: chin.yong@stfc.ac.uk

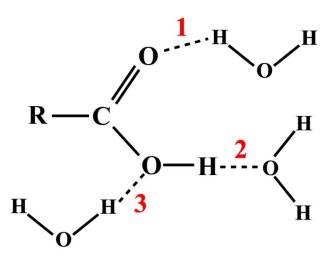
DL_ANALYSER A general analysis tool for DL_POLY

Dr C W Yong Scientific Computing Department, STFC, Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD

(DL Software training workshop, Chile, May 2019)



DL_ANALYSER Scheme


DANAI

DL_ANALYSER Notation for Atomic Interaction

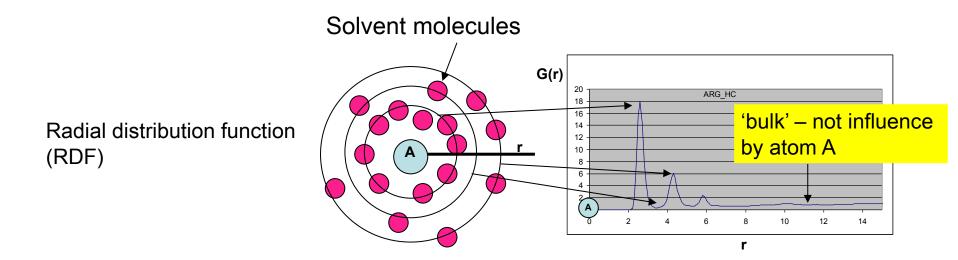
A standard expression system to annotate specific atomic interactions.

Useful for almost every aspect of atomistic simulations including solute-solvent interactions.

(C. W. Yong & I. T. Todorov, *Molecules* (2018), **23**, 36)

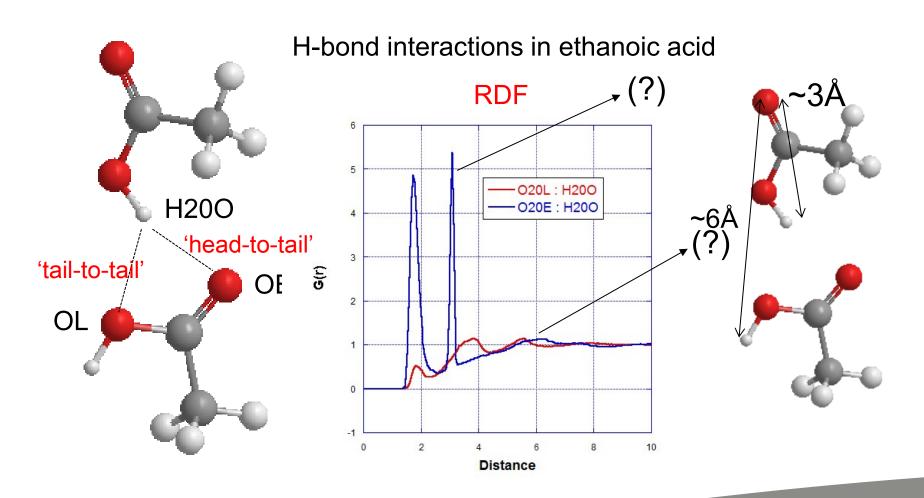
Typical pictorial representation of H-bond (HB) between carboxylic acid and water molecules.

How many types of HB interactions between two carboxylic (-COOH) groups?



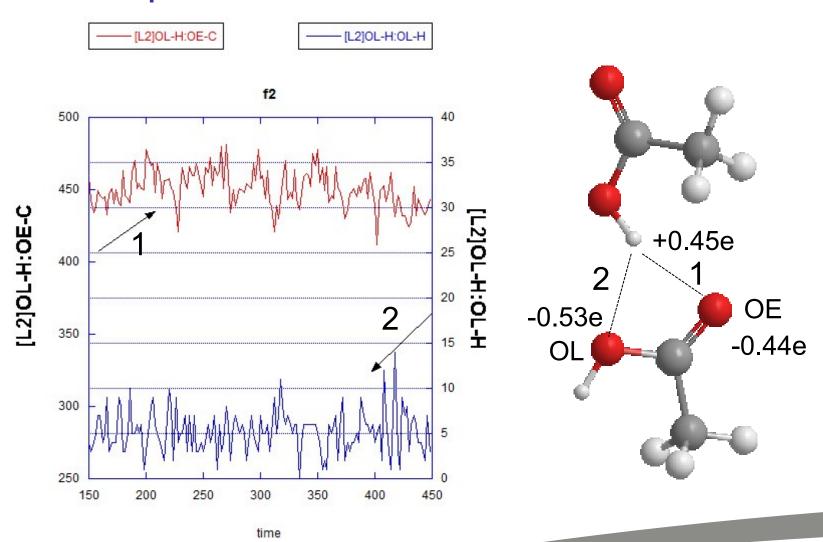
DANAI – standard annotation system to describe localised atomistic interactions.

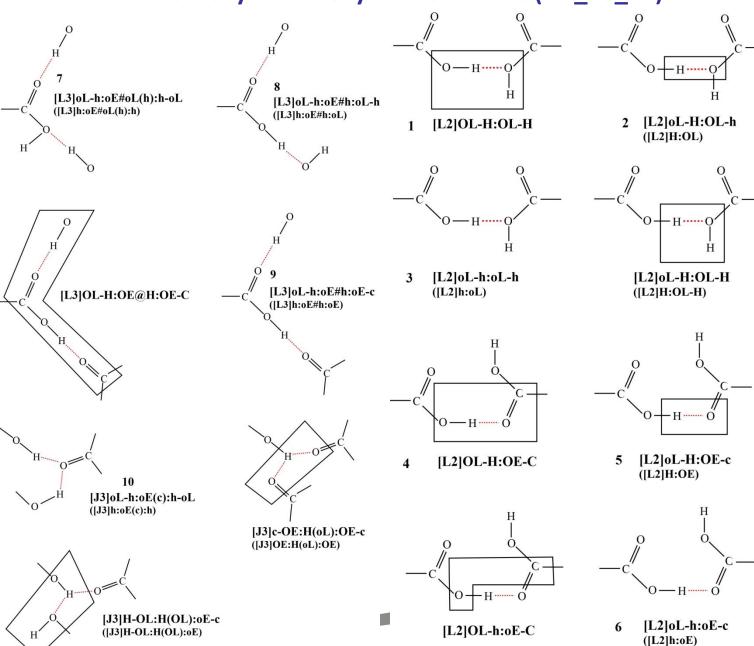
- Detailed microscopic descriptions of atomic interactions between 2 or more functional groups.
- Universal expressions that contain the actual chemical details and hides (and bypass) complex data structures that are dependent on FF models.
- Consistent notation for any kind of molecular systems crystalline, polymeric, condensed-phase.
- Easy to construct and interpret by human and computation.
- Information can be catalogued and subsequently retrieved for data analysis (cheminformatics).
- MD trajectories expressed in the universal notation. Run once and archived. Enable future data analysis.


G(r) – radial distribution function. Common analysis method for looking at the molecular structures in solutions.

Good for 'general feel' how solvent molecules packed around the solute.

These analysis gives solvent-solute interactions in a broader sense.




Movie: 3cooh.xyz

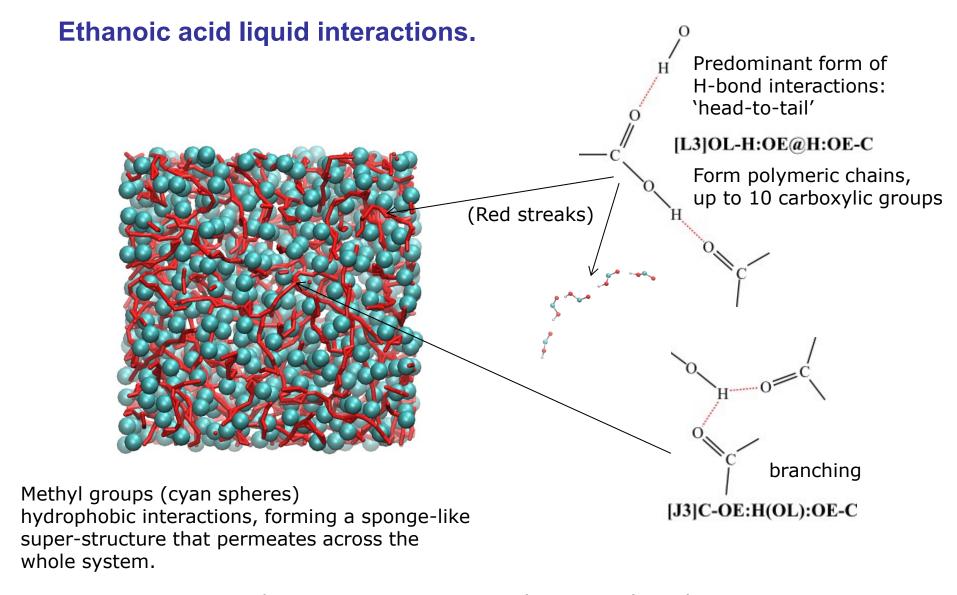
Molecular simulations Of pure ethanoic acid

Use of DL_ANALYSER

Carboxylic-carboxylic interactions (HB_20_20)

UK Research and Innovation

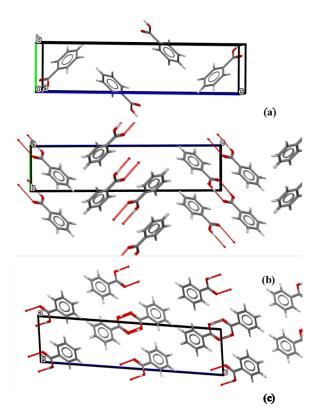
Molecular simulations Of pure ethanoic acid


DANAI expression, i number of interactions, mi 1. [L2]OL-H:OL-H 1.69 ± 1.27 2. [L2]oL-H:OL-h 79.34 ± 7.58 113.50 ± 8.75 3. [L2]oL-h:oL-h 4. [L2]OL-H:OE-C 418.90 ± 14.65 5. [L2]oL-H:OE-c 504.61 ± 10.76 6. [L2]oL-h:oE-c 581.28 ± 8.50 7. [L3]oL-h:oE#oL(h):h-oL 59.64 ± 6.17 8. [L3]oL-h:oE#h:oL-h 92.95 ± 7.38 9. [L3]oL-h:oE#h:oE-c 477.39 ± 13.60 10.[J3]oL-h:oE(c):h-oL 22.32 ± 4.35

Correlation analysis (Pearson)

	1	2	3	4	5	6	7	8	9	10
1	1.000	0.056	-0.001	-0.004	-0.080	-0.182	0.005	-0.009	-0.163	-0.063
2		1.000	0.764	-0.610	-0.444	-0.811	0.627	0.644	-0.794	-0.253
3			1.000	-0.834	-0.653	-0.628	0.617	0.853	-0.651	-0.067
4				1.000	0.906	0.526	-0.445	-0.696	0.676	-0.312
5					1.000	0.405	-0.286	-0.506	0.616	-0.546
6						1.000	-0.482	-0.461	0.915	0.364
7							1.000	0.521	-0.457	-0.243
8								1.000	-0.562	-0.094
9									1.000	0.077
10										1.000

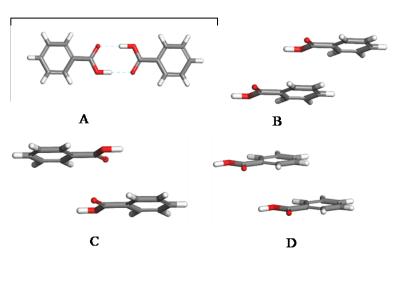
C. W. Yong & I. T. Todorov, *Molecules* (2018), **23**, 36


Can also carry out cross-correlation analysis between HB and HP interactions.


Benzoic acid case

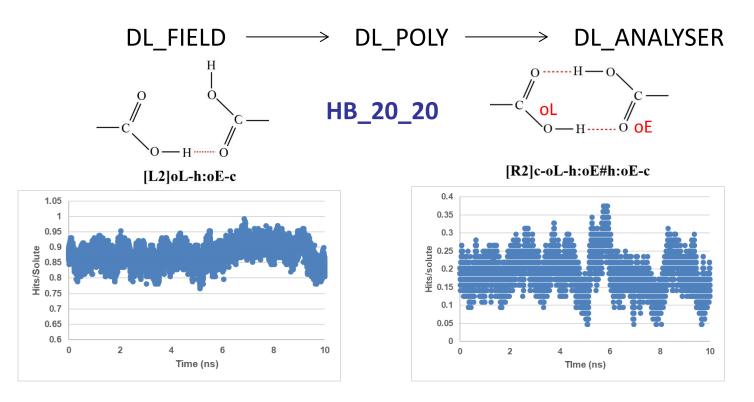
https://doi.org/10.1080/08927022.2018.1560441

- Benzoic Acid crystallises in a single polymorphic form, containing
 H:O20E H-bonding dimers
- Solution chemistry experimental data indicates that H-bonding occurs in solution prior to nucleation


It is hypothesised that the preaggregation of the H:O20E H-bonding dimers in solution drives the crystallisation of the singular polymorphic form of benzoic acid

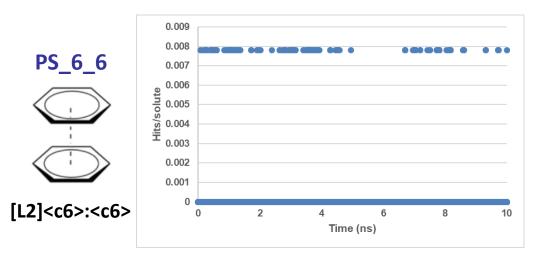
Crystal structure analysis

The strongest intermolecular group interactions in benzoic acid solid-state structure were identified



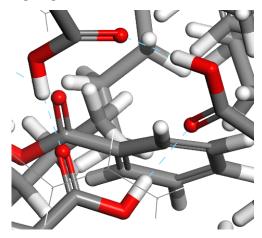
Syntho	Multiplicit	Intermolecular	Lattice Energy	Interaction Type
	У	Energy	Contribution (%)	
	1	-5.3	26.8	H-bonding dimers
В	2	-2.0	19.8	Dispersive head- head pi-pi stack
	1	-1.5	7.6	Dispersive head-tail polar stack
D	2	-1.4	14.2	Dispersive offset head-head stack

- Strongest intermolecular interaction in the crystal structure found to be O:H bonding dimers
- Also some strong pi-pi stacking interactions found in the crystal structure

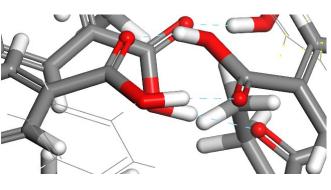

MD Simulation of benzoic acid in hexane

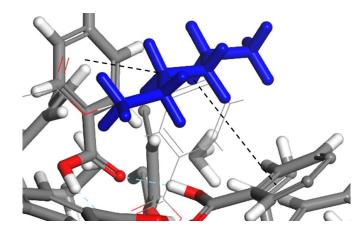
- The lower case letters in the DANAI expression indicate that these atoms can form other interactions with other atoms
- It was found that the vast majority of carboxyl groups were forming singular h:oE interactions
- The carboxylic acid dimer interactions were also found to be present in approximately 20% of the molecules

π - π stacking interactions were also examined from the benzoic acid/hexane systems



Numbers of pi-pi stacking interactions much lower than the h:oE or h:oL interactions


Though some stacking interactions appear in the trajectory files, they are much less frequent than the h:oE interactions and are therefore thought to influence the crystallisation much less.


Structural examinations

[R3]c-oL-h:oE#h:oE#h:oE-c

[R2]c-oL-h:oE-c-oL-h:oE-c

Three membered OH...O H-bonding ring

OH...O H-bonding 'classic' dimer

Hexane molecule sitting between ring structures

Hexane molecules poorly solvating the COOH group results in the aggregation of these groups, however they can form stronger dispersive interactions with the less polar groups

DL_ANALYSER registrations

The program is supplied to individuals under an academic licence, which is free to academics pursuing scientific research of a non-commercial nature. Daresbury Laboratory is the sole centre for distribution of the package.

For more information, please visit the web site:

http://www.ccp5.ac.uk/DL_ANALYSER

Comments, suggestions: chin.yong@stfc.ac.uk